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Motivation

In many research disciplines, data are collected as multiple
samples from similar populations.
For example,
▸ in the field of family studies, sociologists collect survey data

on the social and economic characteristics of families (e.g.,
family incomes, marriage status) from years to years;

▸ in educational studies, students’ performances are monitored
from time to time, in the form of multiple samples;

▸ in social media-related studies, people’s activities on
Facebook or Twitter in different periods of time are naturally
collected as multiple samples;

▸ etc...



Example: How to analyze data looks like this?
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Figure: Data source: UK Family Expenditure Survey data on age of the
head of the household (HHH),from the years 1968 to 1988.



Data as multiple samples

▸ In these applications, data are in the form of multiple samples:

x0,1, x0,2, . . . , x0,n0 ∼ G0(x)
x1,1, x1,2, . . . , x1,n1 ∼ G1(x)

⋮
xm,1, xm,2, . . . , xm,nm ∼ Gm(x).

▸ The population distributions G0,G1, . . . ,Gm share some
common features.

▸ Making use of this information will lead to better efficiency
when conducting statistical inference on various aspects of
the multiple distributions.



How to get these similar populations connected?

A fully parametric approach:
▸ choose a suitable parametric model (e.g., Normal distribution)

for each of the multiple populations
▸ need to take the risk of model misspecification: a mild

violation on model assumptions may lead to unreliable
statistical conclusions

▸ /



How to get these similar populations connected?

A fully non-parametric approach:
▸ do not place distributional assumptions on the populations
▸ can avoid the risk of model misspecification
▸ usually leads to low statistical efficiency

▸ /



How to get these similar populations connected?

Middle grounds can be found! Ô⇒ a semi-parametric approach:
the density ratio model [Anderson, 1979]:
▸ do not place distributional assumptions directly on each

population
▸ model the connection between the multiple population

distributions
▸ a flexible but efficient compromise between the parametric

and non-parametric approaches

▸ ,



Outline

Motivation

A semiparametric model: Density Ratio Model

A non-parametric inference method: Empirical Likelihood

How does the EL-DRM framework work in quantile estimation?

Our contribution

Real Data



Recall: Data as multiple samples

▸ Data are in the form of multiple samples (e.g., collected over
years):

x0,1, x0,2, . . . , x0,n0

i.i.d .∼ G0

x1,1, x1,2, . . . , x1,n1

i.i.d .∼ G1

⋮

xm,1, xm,2, . . . , xm,nm
i.i.d .∼ Gm.

▸ G0,G1, . . . ,Gm are the distributions of the multiple
populations.

▸ Samples drawn from different populations (e.g., different
years) are assumed to be independent of each other.



The Density Ratio Model (DRM)

▸ Let gk(x) denote the density function of the k -th population
distribution Gk , for k = 0,1, . . . ,m.

▸ The DRM models the relationship between G0, . . . ,Gm by
assuming that the ratio of any two density functions is of a
certain form.

▸ For k = 0,1, . . . ,m,

gk(x)
g0(x)

= exp{αk + θ⊺kq(x)} .

▸ We call G0 the base distribution.
▸ q(x) is some given vector-valued function, called the basis

function.
▸ (αk ,θk) is some unknown vector-valued parameters to be

estimated.



DRM is a flexible model

Many distribution families fall into the DRM category:
▸ Normal distributions satisfy the DRM with basis function

q(x) = (x , x2);
▸ Gamma distributions satisfy the DRM with basis function

q(x) = (x , log x);
▸ any exponential family.

On the other hand, to use DRM, we do not need to assume that
the distributions G0, . . . ,Gm are Normal or Gamma.

⇓
DRM is very flexible.



One subtle thing in DRM

▸ The base distribution G0 is still left unspecified in DRM.
▸ If we assign a parametric distribution to the base distribution

G0 (for example, let G0 be the Normal distribution), the DRM
would reduce to a usual parametric model.

▸ Data analysis based on a parametric model must take the risk

of model misspecification./



A inference method: Empirical Likelihood

▸ Motivated by this observation, we use a non-parametric
inference method: the empirical likelihood (EL) [Owen, 1988].

▸ Owen [2001]: EL is a nonparametric method of statistical
inference. “It keeps the effectiveness of likelihood methods
and does not impose a known family distribution on the data”.

▸ There have been many works on the EL approach under the
DRM [e.g., Qin, 1993; Qin and Zhang, 1997; Fokianos et al.,
2001; Qin, 1998; Chen and Liu, 2013; Cai et al., 2017].



Outline

Motivation

A semiparametric model: Density Ratio Model

A non-parametric inference method: Empirical Likelihood

How does the EL-DRM framework work in quantile estimation?

Our contribution

Real Data



EL for a single sample
▸ In principle, the likelihood of a distribution given a random

sample is proportional to the probability of observing the
sample under this distribution.

▸ The EL of a distribution is defined to be the likelihood as if the
distribution is discrete.

▸ Suppose we have a sample of i.i.d. observations x1, . . . , xn

drawn from a common distribution F .
▸ Let pi ∶= PF(Xi = xi).
▸ The EL of the distribution F is defined as the probability of

observing this random sample:

Ln(F) =
n

∏
i=1

PF(Xi = xi) =
n

∏
i=1

pi = p1 × p2 ×⋯pn.

▸ Following the work by Owen [1988], we require that

n

∑
i=1

pi = p1 + p2 +⋯ + pn = 1.



EL under DRM

▸ Let xkj be the j-th observation from the k -th population, and let

pkj = PG0(X = xkj).

▸ The principle of EL leads to the EL under the DRM:

Ln(G0, . . . ,Gm) =∏
k,j

PGk (X = xkj) = {∏
k,j

pkj} × exp{∑
k,j

θ⊺k q(xkj)}.

▸ The logarithm of EL, called log-EL, is a function of θk ,pkj :

`n(θk ,pkj) = log Ln(G0, ...,Gm) = ∑
k ,j

log(pkj) +∑
k ,j

θ⊺kq(xkj).



What can we do with this log-EL function?

▸ Recall that in the classical likelihood theory, what can we do
with the log likelihood function?
▸ give point estimates on the parameters: maximum likelihood

estimator
▸ conduct hypothesis tests on parameters: likelihood ratio test
▸ draw confidence intervals on the parameters
▸ etc...

▸ We can do similar things with the log-EL function!
▸ We can regard the log-EL function as the usual log likelihood

function in the classical likelihood theory.
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Quantile estimation

▸ Data: m + 1 independent random samples,

x0,1, x0,2, . . . , x0,n0

i.i.d.∼ G0

x1,1, x1,2, . . . , x1,n1

i.i.d.∼ G1

⋮

xm,1, xm,2, . . . , xm,nm
i.i.d.∼ Gm.

▸ Let ξk be the τk -th quantile of the k -th population, for
k = 0,1, . . . ,m.
e.g., let ξ1 be the 10% quantile of G1.

▸ Target: efficiently estimate the quantiles (ξ0, ξ1, . . . , ξm) at the
same time, by using the DRM to have these distributions
connected.



The EL-DRM quantile estimator

▸ Following Owen [1988]’s convention, we require that for
r = 0,1, . . . ,m,

∑
k ,j

pkj exp{θ⊺r q(xkj)} = 1. (1)

▸ As in the classical likelihood theory, we obtain the maximizer
θ̂k , p̂kj of the log-EL function, subject to the constraints (1).

▸ The distributions G0, . . . ,Gm are fully characterized by pkj ,θk

in the framework of EL-DRM.
▸ Once we obtain the maximizer θ̂k , p̂kj , we can easily obtain

the estimated distribution function Gk(x), denoted as Ĝk(x).
▸ The EL-DRM quantile estimator for the k -th distribution is

naturally defined as the value at which the estimated
distribution Ĝk(x) first exceeds τk (e.g., 10%).
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One problem in DRM remains unsolved

▸ In the current literature of DRM, researchers assume the
knowledge of the basis function q(x).

▸ In real-world applications, complete knowledge about the
most suitable basis function is impossible.

▸ How to specify a suitable basis function remains an unsolved
problem.

▸ We propose an approach to specifying a basis function based
on data.



Formulate a “suitable” basis function

▸ Recall the DRM assumption: for k = 0,1, . . . ,m,

gk(x)
g0(x)

= exp{αk + θ⊺kq(x)} .

▸ Re-write the DRM assumption as

fk(x) ∶= log
gk(x)
g0(x)

= αk + θ⊺kq(x).

▸ The log density ratios f0(x), f1(x), . . . , fm(x) are all linear
combinations of the elements in the basis function q(x).

▸ Intuitively, if we regard f0, f1, . . . , fm as functional data, the
elements of basis function should represent the dominant
modes of variation of such functional data.



Functional Principal Component Analysis (FPCA)
FPCA is very similar in idea to Principal Component Analysis,
except that it deals with functional data.
▸ the “data” now are in the form of functions: f0, . . . , fm;
▸ FPCA is a dimension reduction technique on functional data;
▸ Use only a small number of functions to well approximate

f0, . . . , fm:

fk(x) ≈
l

∑
i=1
βk

i ϕi(x).

▸ ϕ1(x), ϕ2(x), . . . , ϕl(x), usually called the functional principal
components (FPC), give l orthogonal dominant modes of
variation among the functional data f0, . . . , fm.

▸ We propose to use these FPC’s as the basis function in DRM:

q(x) = (ϕ1(x), ϕ2(x), . . . , ϕl(x)).



Outline

Motivation

A semiparametric model: Density Ratio Model

A non-parametric inference method: Empirical Likelihood

How does the EL-DRM framework work in quantile estimation?

Our contribution

Real Data



UK household net income data

▸ Survey data from the Family Expenditure Survey in UK, from
the years 1968 to 1988.

▸ The data consists of 21 yearly cross-sectional samples that
include information about the incomes of more than 7000
households (HH’s) each year.

▸ The variable of interest is the HH relative income: the ratio of
the net HH income against the mean income of the population
in the same year.

▸ The net HH income (aka disposable income) is the total
income of all the HH members, after the income taxes have
been accounted for.

▸ Here we focus on the log HH relative income.



Plots of the distributions for the log relative income from
1968 to 1988

−2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Yearly data 1968−1988

log HH Relative Income

De
ns

ity



Obervations

▸ The 21 curves represent the distributions of 21 populations
(yearly, 1968-1988).

▸ It looks like there is some connection between these 21
distributions.

▸ It is reasonable to fit DRM to this data.
▸ However, the question is: which basis function should we use?
▸ We look at how the quantile estimation works under DRM

when we use different basis functions.
▸ We focus on estimating the 21 10%-quantiles of the 21

populations.



Procedure on estimating 10% quantiles

▸ We regard the 21 (yearly, from 1968 to 1988) surveyed log HH
relative income datasets as 21 populations.

▸ Each of the 21 populations is of size over 7000.
▸ The 10% sample quantiles of the 21 surveyed datasets are

regarded as the 10% population quantiles.
▸ We randomly sample 100 observations (called sub-samples)

from each of the 21 surveyed datasets.
▸ Fit the DRM to these 21 sub-samples and obtain the 10%

EL-DRM quantile estimators for the 21 populations.
▸ Repeat the previous 2 steps for many times (for example, 500

times).
▸ Measure the mean squared error (MSE) of these 500 sets of

10% EL-DRM quantile estimators based on the sub-samples.



Performance of the 10% EL-DRM quantile estimators

Performance of the 10% EL-DRM quantile estimators for the first 6
years 1968-1973:

Table: MSE of the 10% EL-DRM quantile estimators for the years
1968-1973 using different basis functions (smaller is better).

DRM with basis function q(x) MSE of the 10% EL-DRM quantile estimators
Year 1968 Year 1969 Year 1970 Year 1971 Year 1972 Year 1973

(x , x2) 0.0114 0.0113 0.0135 0.0127 0.0134 0.0133
(
√
∣x ∣, x , x2, log(1 + ∣x ∣)) 0.0142 0.0148 0.0160 0.0146 0.0145 0.0150

1 FPC 0.0082 0.0063 0.0086 0.0074 0.0078 0.0096
2 FPC’s 0.0089 0.0084 0.0101 0.0098 0.0096 0.0104

Baseline
sample quantile of sub-samples 0.0180 0.0180 0.0195 0.0177 0.0189 0.0197



Conclusions

▸ The DRM can efficiently take the connection between multiple
populations into consideration.

▸ Using our proposed FPC’s as the basis function in DRM leads
to efficient estimation of the population quantiles.

▸ Besides estimation of quantiles, the EL-DRM framework also
has successes in many other areas.

▸ We would love to see the DRM being applied and connected
to sociological research studies! :)
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Thank you!
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