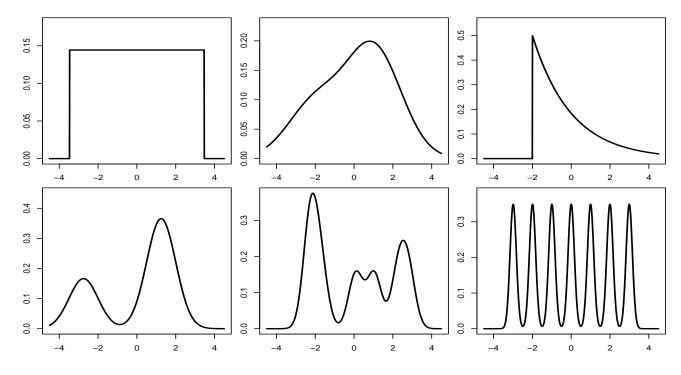


Data-Integrated Causal Inference


- Goal: estimate the causal effects on a target population.
- Multi-source data: collected from experimental (RCT) and observational studies (Obs).

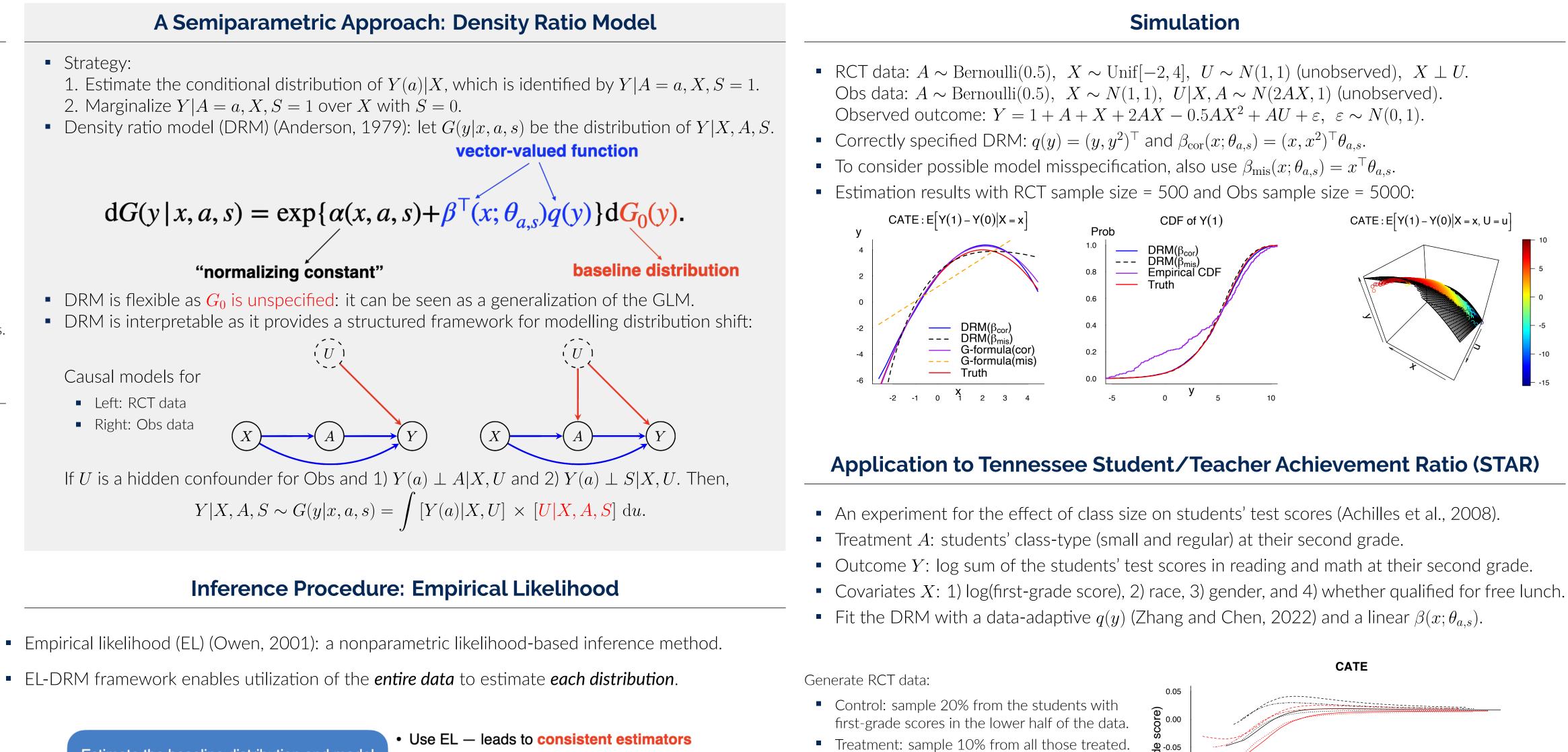
	Experimental data	Observational data
Confounding	No	Inevitable
Representative of the target population	No	Yes
Size	Small	Large
Cost	High	Low
Disadvantage	Lack of external validity	Lack of internal validity

- Question: how to take advantage of both data with complementary features?
- Example: in 2019, U.S. FDA approved IBRANCE® for the treatment of men with breast cancer.
 - Clinical trials performed for authorization were mainly performed on the female population.
 - The approval was based on data from EHRs and postmarketing reports of the real use of drug in male patients.

Importance of Distribution-Centric Causal Inference

- Many studies focus on mean: e.g., average treatment effect (ATE) and conditional ATE (CATE).
- Kennedy et al. (2023): "Causal effects are often characterized with averages, which can give an incomplete picture of the underlying counterfactual distributions."

It is more sensible to understand and study causal effects from a distributional viewpoint.

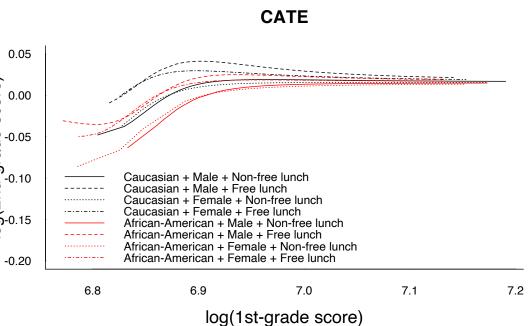

Setup

- Potential outcome (Rubin, 1974): Y(a) with treatment level $a = 0, \ldots, K$.
- Data: $\{(X_i, A_i, Y_i, S_i) : i\}$ with Y = Y(A) is the observed actual outcome and $S_i = \mathbb{1}(i \in \mathsf{RCT})$.
- Goal: estimate the distribution of Y(a) in the target population represented by the Obs.
- Assumptions for identifiable causal inference:
- 1. Internal validity of RCT: $Y(a) \perp A | X, S = 1$ for all a.
- 2. Transportability/Generalizability: $Y(a)|X, S = 1 \stackrel{d}{=} Y(a)|X$ for all a.

A Semiparametric Approach to Data-Integrated Causal Inference

Archer Gong Zhang Nancy Reid Qiang Sun

Department of Statistical Sciences, University of Toronto



Estimate the baseline distribution and model
parameters:
$$\hat{G}_0(y)$$
 and $\{\hat{\theta}_{a,s} : a, s\}$
• Discrete estimator of baseline distribution:
 $\hat{G}_0(y) = \sum_{r,i} \hat{p}_{ri} \mathbb{1}(y_{ri} \le y)$
Estimate the distribution of $Y(a) | X = x$:
 $\hat{G}(y | x, a, s = 1)$
• $\hat{G}(y | x, a, s = 1) = \sum_{r,i} \hat{p}_{ri} \exp\{\hat{\alpha}(x, a, 1) + \beta^{\mathsf{T}}(x; \hat{\theta}_{a,1})q(y_{ri})\}\mathbb{1}(y_{ri} \le y)$
• Estimate the distribution of $Y(a)$ and its
functionals (e.g., mean, CDF, quantiles, etc)
• Marginalizing $\hat{G}(y | x, a, s = 1)$ over
the observed x in Obs data

enerate Obs data:

Control: all the controls not included in the RCT Treatment: all those whose outcomes were in the upper half of the outcomes among the treated students not included in the RCT.

References

chilles, H. P. Bain, F. Bellott, J. Boyd-Zaharias, J. Finn, J. Folger, J. Johnston, and E. Word. Tennessee's Student Teacher Achievement Ratio (STAR) project, 2008. URL https://doi.org/10.7910/DVN/SIWH9F.

nderson. Multivariate logistic compounds. *Biometrika*, 66(1):17–26, 1979.

[.] Kennedy, S. Balakrishnan, and L. Wasserman. Semiparametric counterfactual density estimation. *Biometrika*, 110(4):875–896, 2023.

[.] Owen. Empirical Likelihood. Chapman & Hall/CRC, New York, 2001

D. B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies. *Journal of educational Psychology*, 66(5):688, 1974.

A. G. Zhang and J. Chen. Density ratio model with data-adaptive basis function. Journal of Multivariate Analysis, 191:105043, 2022