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Motivation

In many disciplines, data are collected as multiple samples from
similar and connected populations.
For example,
▸ in socio-economic studies, researchers collect survey data on

household characteristics from year to year;
▸ in network studies, people’s activities on social networks in

different periods of time are collected as multiple samples;
▸ etc...



Example: How to analyze data look like these?
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Figure: Histograms of log annual household incomes from 2013 to 2018.
Data source: US Consumer Expenditure Surveys
https://www.bls.gov/cex/pumd.htm.

https://www.bls.gov/cex/pumd.htm
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Research problem

▸ We study hypothesis test on quantiles of multiple populations.
▸ Given m + 1 independent samples from multiple populations:

x0,1, x0,2, . . . , x0,n0

i.i.d .
∼ G0(x)

x1,1, x1,2, . . . , x1,n1

i.i.d .
∼ G1(x)

⋮

xm,1, xm,2, . . . , xm,nm
i.i.d .
∼ Gm(x).

▸ Consider G0,G1, . . . ,Gm share some common features.
▸ Let ξr be the τr -th quantile of the r -th population.
▸ Hypothesis test:

H0 ∶ ξ ∶= (ξ0, ξ1, . . . , ξm) = ξ∗ versus H1 ∶ ξ ≠ ξ∗,

for some given vector ξ∗.



Different approaches to statistical analysis

▸ A fully parametric approach:
▸ assumes a suitable parametric model for each population
▸ there is a risk of model misspecification

▸ A fully non-parametric approach:
▸ does not place distributional assumptions on the populations
▸ free from the risk of model misspecification, but usually leads

to low statistical efficiency

▸ ✓ a semi-parametric approach: density ratio model
[Anderson, 1979]:
▸ does not place parametric assumptions on each population
▸ models the connection between the multiple populations to

account for the latent structure they share
▸ a flexible but efficient compromise between the parametric and

non-parametric approaches



Density ratio model (DRM)

▸ The DRM models the relationship between {Gk}
m
k=0 by

assuming the ratios of their densities {gk}
m
k=0 have certain

forms:

gk(x)
g0(x)

= exp{θ⊺kq(x)} , k = 0,1, . . . ,m.

▸ q(x) is some given vector-valued function, called the basis
function; we require the first component of q(x) to be 1.

▸ θk is some unknown vector-valued parameters to be
estimated; the first component of θk is a normalizing constant.



Possible DRM-based approaches

Some possible approaches under the DRM:
▸ Wald-type methods [Chen and Liu, 2013];
▸ Likelihood ratio test (our approach).



Wald method

▸ Chen and Liu [2013] propose a quantile estimator ξ̂ that is
asymptotically normal with covariance Σ.

▸ The Wald method is used for H0 ∶ ξ = ξ∗, with the test statistic

n(ξ̂ − ξ∗)⊺Σ−1
(ξ̂ − ξ∗).

▸ A consistent and stable estimate of Σ must be provided.
▸ [Chen et al., 2016] suggest a resampling scheme for an

estimate of Σ.



Our approach: likelihood ratio test

▸ We investigate the use of the likelihood ratio test (LRT).
▸ The LRT is generally believed to be more powerful, suggested

by the Neyman–Pearson lemma.
▸ The LRT confidence regions have data-driven shapes, while

those by the Wald method are oval-shaped.
▸ In fact, the LRT approach is the core of the foundational work

of the empirical likelihood by Owen [1988].
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Empirical Likelihood

▸ We use a non-parametric inference method: the empirical
likelihood (EL).

▸ Owen [2001]: “EL keeps the effectiveness of likelihood
methods and does not impose a known family distribution on
the data.”

▸ There have been many works on the EL approach under the
DRM [e.g., Qin, 1993; Qin and Zhang, 1997; Fokianos et al.,
2001; Qin, 1998; Chen and Liu, 2013; Cai et al., 2017].



EL under DRM

▸ Let xkj be the j-th observation from the k -th population, and let
pkj = dG0(xkj) = P(X = xkj ; G0).

▸ The principle of EL leads to the EL under the DRM:

Ln(G0, . . . ,Gm) =∏
k ,j

dGk(xkj) = {∏
k ,j

pkj} × exp{∑
k ,j

θ⊺kq(xkj)}.

▸ The log-EL regarded as a function of θ and G0:

`n(θ,G0) = log Ln(G0, ...,Gm) =∑
k ,j

log pkj +∑
k ,j

θ⊺kq(xkj).



An empirical likelihood ratio test (ELRT) approach

▸ Recall: H0 ∶ ξ = ξ∗ versus H1 ∶ ξ ≠ ξ∗.
▸ The test statistic Rn is twice the difference between the two

largest possible values of the log-EL `n(θ,G0):
▸ one is attained within the space of all DRM distributions

G0, . . . ,Gm: H0 ∪H1;
▸ one is attained in the subset where their quantiles are ξ∗: H0.

▸ Reject H0 if this difference is too large by some standard
formed by the distribution of Rn under H0.



ELRT statistic

▸ The space of H0 ∪H1 correspond to {θ,G0} satisfying

∑
k ,j

pkj exp{θ⊺r q(xkj)} = 1. (1)

▸ The space of H0 correspond to {θ,G0} satisfying (1) and

∑
k ,j

pkj exp{θ⊺r q(xkj)}1(xkj ≤ ξ
∗

r ) = τr . (2)

▸ Our ELRT statistic is defined as

Rn = 2{ sup
θ,G0

{`n(θ,G0)∣(1)}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
H0∪H1

− sup
θ,G0

{`n(θ,G0)∣(1), (2)}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
H0

}.



Asymptotic chi-squaredness of the ELRT statistic

We have Wilks’ Theorem as in the classical likelihood theory:

Theorem
Under some conditions and H0, the ELRT statistic Rn

d
→ χ2

m+1 as
the total sample size n = n0 +⋯ + nm →∞.

▸ This result allows us to determine an approximate rejection
region for the test.

▸ Reject H0 at significance level α when Rn ≥ χ
2
1−α,m+1.
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US consumer expenditure surveys data

▸ We consider a survey data from the US consumer
expenditure surveys, from 2013-2018, where ≈ 5000
households are contacted each year.

▸ Data available on https://www.bls.gov/cex/pumd.htm.
▸ The variable of interest is the annual sum of the income

received by all household members.
▸ We log-transformed the income values to make the scale

more suitable for numerical computation.

https://www.bls.gov/cex/pumd.htm
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Figure: Histograms of log annual household incomes from 2013 to 2018.



Real-data based simulations

▸ Apparently, these distributions are connected.
▸ It is difficult to prescribe a suitable parametric model for these

data sets, but a DRM may work well enough.
▸ We use real-data based simulations by sampling (with

replacement) repeatedly from the 6 populations formed by the
yearly 2013-2018 data sets to:

1. check whether chi-square is a good approximation of the
distribution of Rn under H0

2. study the confidence region based on our ELRT approach



Is chi-square is a good approximation?

Left: H0 regarding 50% quantile in 2013;
Right: H0 regarding 50% quantile in 2014;
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Figure: Q-Q plots of Rn values against χ2
1, based on 1000 simulated real

data sets of an equal sample size nr = 100. We use q(x) = (1, x , x2)⊺.



Confidence region
H0 regarding 20% quantiles in 2013 and 2018 simultaneously

20% quantile in 2013

20
%

 q
ua

nt
ile

 in
 2

01
8

9.5 10.0 10.5 11.0

9.
5

10
.0

10
.5

11
.0

ELRT

Wald

Nonparametric

Figure: 95% confidence regions by three methods, based on one
simulated real data set of an equal sample size nr = 100. Diamond:
location of the true quantiles. We use q(x) = (1, x , x2)⊺.



Numerical results

Table: Empirical coverage probabilities and average areas for 20%
quantiles in 2013 and 2018 simultaneously, based on 1000 simulated real
data sets of an equal sample size nr .

Method
Nominal level: 90% Nominal level: 95%

Coverage probability Area Coverage probability Area

nr = 100

ELRT 89.00% 0.284 94.20% 0.379
Wald 86.30% 0.245 91.80% 0.319

Nonparametric 87.20% 0.358 91.60% 0.466

nr = 200

ELRT 88.20% 0.130 93.40% 0.171
Wald 86.10% 0.120 92.30% 0.156

Nonparametric 88.80% 0.183 93.80% 0.238



Summary on real-data analysis

▸ The points of Rn in the Q-Q plots are close to the 45-degree
line: the chi-square approximation is satisfactory.

▸ The ELRT produces very satisfactory confidence regions that
have data-driven shapes.

▸ The ELRT confidence regions improve the Wald confidence
regions by rightfully increased area to achieve more accurate
coverage probabilities. They are much more efficient than the
nonparametric confidence regions.
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Future work

ELRT for a composite hypothesis regarding function of quantiles

H0 ∶ g(ξ∗) = 0 against H1 ∶ g(ξ∗) ≠ 0.

▸ Application: have the 5-th percentiles changed across years?
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