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Motivation



Motivation
• In many disciplines, data are collected as multiple samples from similar and 

connected populations:  


• E.g., to study the evolution of the economic status of a country, survey data 
sets of household income data are collected over multiple years:  

 is the population distribution for each year. Gk

Share some common features



Motivation
• In many disciplines, data are collected as multiple samples from similar and 

connected populations:  


• E.g., in network studies, people’s activities on social networks collected in 
different time periods/locations naturally form multiple samples:  

 is the population distribution for each time period/location. Gk

Share some common features



Example: How to analyze data like these?

Histograms of log household relative income from 1968 to 
1988. Data source: UK Family Expenditure Survey. 



Different approaches to statistical analysis

Parametric approaches Nonparametric approaches A Semiparametric approach

Choose a suitable parametric 
model (e.g., normal) for each of 
the multiple populations

Do not place distributional 
assumptions on the populations

Do not place parametric 
assumptions on each population

Pros: good statistical efficiency Pros: free from the risk of model 
misspecification

Model the connection 
between the multiple 
population distributions

Cons: consequence of model 
misspecification may be serious Cons: low statistical efficiency

A flexible & efficient compromise 
between parametric and 
nonparametric approaches

No   ☹ No 🙁 Yes!    😃



A Semiparametric Model: 

Density Ratio Model



Density ratio model (DRM) (Anderson, 1979)
• : density of the th population distribution .


• DRM assumes that: for 





• We call  the base distribution; any  may serve the same purpose.


• Sample from  forms a biased sample from  characterized by the exponential tilting!

gk(x) k Gk

k = 1,…, m,

gk(x)
g0(x)

= exp{αk + θ⊤
k q(x)}

G0 Gk

Gk G0

unknown parameters  
to be estimated

vector-valued function:  
basis function



Why DRM?
DRM: gk(x)/g0(x) = exp{αk + θ⊤

k q(x)} .

• DRM is flexible:  is unspecified and users can choose a  they wish, 
which allow it to cover many distribution families. 

G0 q(x)

11

(x, x2)
(x, log x)

Distribution family         Basis function 

Normal

Gamma

Exponential family Sufficient statistics

… …

q(x)



Why DRM?

• With an appropriate basis function , DRM allows us to use the pooled 
data to estimate , rather than use data only from . 


• Can be useful for integrating data from heterogeneous sources: underlying 
data distributions may not be identical but probably connected.

q(x)
Gk Gk

Gain in statistical efficiency!

DRM: gk(x)/g0(x) = exp{αk + θ⊤
k q(x)} .



Inference for the unspecified G0
• If assigning a parametric form to , DRM would reduce to a fully parametric model. 


• Use a nonparametric inference method: empirical likelihood (EL; Owen, 1988).

G0

Art B. Owen

Owen (2001): “EL keeps the effectiveness of likelihood methods 

and does not impose a known family distribution on the data.”



(Pause for questions.) 



Data-Adaptive Basis Function 

in the DRM



An open problem in DRM
• The benefit of DRM largely relies on the correct specification of the basis function .


• Complete knowledge of  is impossible in applications. 


• Some remedies in the current literature: 


• choose a  based on some exploratory data analysis; 


• Chen and Liu (2013): use a rich  for “safety", e.g., ; 


• Fokianos (2007): select a  among a number of candidates based on some model selection criterion. 


• How to choose  based on data remains an open problem.


• We propose a data-adaptive approach to the choice of .


q(x)

q(x)

q(x)

q(x) q(x) = ( |x |1/2 , x, x2, log(1 + |x | ))⊤

q(x)

q(x)

q(x)

Our contribution helps further alleviate  
the risk of model misspecification! 



A closer look at q(x)
• Recall the DRM assumption: 


• The DRM is always satisfied if





• Therefore, the DRM is meaningful when all centred  can be written as 
 for some lower-than-  dimensional ! 


• Assume such a low-dim  exists and 





under  where 

gk(x)/g0(x) = exp{αk + θ⊤
k q(x)} .

q(x) = (log{g1(x)/g0(x)}, …, log{gm(x)/g0(x)}) .

log{gk(x)/g0(x)}
θ⊤

k q(x) m q(x)

q(x)

𝔼Ḡ[q(X)] = 0,

Ḡ =
m

∑
k=0

ρkGk(x), ρk = lim nk /Ntotal .



Formulate an appropriate q(x)
• Under these assumptions on , define 





•  forms a linear space. 


•  is made of elements in the basis of such a linear space.


• Idea: form  by the dominant modes of variation of .

q(x)

Qk(x) := log
gk(x)
g0(x)

− 𝔼Ḡ[log
gk(X)
g0(X) ] = θ⊤

k q(x) .

{Q0(x), …, Qm(x)}

q(x)

q(x) {Q0(x), …, Qm(x)}

αk



Functional principal component analysis (FPCA)
FPCA is a dimension reduction technique on functional data (in our case: 

) that aims to find their dominant modes of variation. 


 

{Q0(x), …, Qm(x)}

Functional data: curves Dominant modes: functional directions

Figure source: https://towardsdatascience.com/functional-principal-component-analysis-and-functional-data-91d21261ab7f

https://towardsdatascience.com/functional-principal-component-analysis-and-functional-data-91d21261ab7f


FPCA (cont’d)
• Via FPCA,  can be represented by  functional principal 

components (FPCs):


 

• FPCs  are the dominant modes of variation of . 


• They are “optimal”: explain the most variability among . 

Q0(x), …, Qm(x) d < m

ψ1(x), …, ψd(x) {Q0(x), …, Qm(x)}

{Q0(x), …, Qm(x)}



Recovery of the FPCs
Given complete knowledge of , we can obtain the FPCs via linear algebra. 


• Let  be an  matrix with the th element 





• Let  be the set of eigenvectors of  corresponding to the eigenvalues 


 

Q0(x), …, Qm(x)

M (m + 1) × (m + 1) (i . j)

M(i, j) = 𝔼Ḡ[Qi(X)Qj(X)], i, j = 0,…, m .

{vj}d
j=1 M λ1 ≥ ⋯ ≥ λd .

Theorem 
For the th FPC  is given by  j = 1,…, d, j ψj(x)

ψj(x) = λ−1/2
j v⊤

j

Q0(x)
⋮

Qm(x)
.



Estimation of the FPCs

  


We successfully prove that these estimated FPCs are consistent under some conditions. 

(Silverman, 1986)



Data-adaptive basis function q(x)
• Use the top  of the estimated FPCs to form the data-adaptive : 


.


• In Zhang and Chen (2022), we proposed some ways to choose  adaptively: 


• proportion of explained variation in FPCA


• model selection, e.g., BIC


• Given the adaptive , we re-use the data for model fitting and inference. 

d q(x)

̂q(x) = (ψ̂1(x), …, ψ̂d(x))

d

̂q(x)



(Pause for questions.) 



Real-data analysis
UK household income data

• We consider a survey data from the Family Expenditure Survey in UK, from 
1968 to 1988. 


• The data contain yearly samples on the incomes and expenditures of 
 households (HHs) each year. 


• Variable of interest: log-transformed HH relative income.

> 7,000



Exploratory analysis
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Years 1968−1988

Kernel density estimators based on HH relative income data. 
Apparently, there is some connection between these distributions. 




Real-data based simulation procedure
We study the EL-based quantile estimation under the DRM.




Estimated FPCs based on real-data
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First three FPCs obtained using the training data from 1968–1981. Note that there are some overall trends in 
these FPCs, suggesting the existence of some latent structures in the multiple populations. 



Performance of quantile estimators (lower is better)

	 


1. The proposed “Adaptive” estimators perform well, with a  gain in 
efficiency compared to the “NP” estimators. 

≈ 39 %

Data pooling via DRM is helpful!



Performance of quantile estimators (lower is better)

	 


2. Our suggested adaptive approach usually selects , the best-performing 
 (“FPC-2”).

d = 2
d

Latent structure often exists in real data. 



Performance of quantile estimators (lower is better)

	 


3. The safe choice “Rich” is not satisfactory here: barely  “NP”.≈

Adaptive basis function is helpful under DRM!



Summary

• DRM with the proposed data-adaptive  leads to efficiency gain in quantile 
estimation. 


• Our contribution gives users confidence in the validity and the effectiveness 
of data analysis via DRM. 


• Other DRM-based inferences using the adaptive  can be similarly 
developed. 

q(x)

q(x)



Some thoughts…

• Under the DRM, every  can be seen as a distributional shift version of .


• 


• DRM offers an interpretable and efficient platform for the distributional shift 
with data from multiple connected sources/domains/environments/modalities, 
and could be particularly useful in: 


• out-of-distribution (OOD) generalization 


• transfer learning/domain adaptation 


• etc…

Gk G0

gk(x) = g0(x) exp{αk + θ⊤
k q(x)} .
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Thank you! 

Questions & discussions are welcome! :-) 


