




#### 1st INRC

### A Semiparametric Approach to Data-Integrated Causal Inference



Archer Gong Zhang
University of Glasgow



Nancy Reid University of Toronto



Qiang Sun U of Toronto & MBZUAI

#### Causal inference with multi-source data

Goal: estimate the causal effects on a target population.

| Collected Data                          | Experimental (RCT)        | Observational (OBS)       |
|-----------------------------------------|---------------------------|---------------------------|
| Confounding                             | No                        | Yes                       |
| Representative of the target population | No                        | Yes                       |
| Size                                    | Small                     | Large                     |
| Cost                                    | High                      | Low                       |
| Disadvantage                            | Lack of external validity | Lack of internal validity |

How to take advantage of both types of data with complementary features?

#### An example of integration:

Based on RCT on *female* and OBS of the real-world usage of the drug on *men*.

U.S. FDA Approves IBRANCE® (palbociclib) for the Treatment of Men with HR+, HER2- Metastatic Breast Cancer

Thursday, April 04, 2019 - 10:57am

#### Density ratio model (DRM)

- Potential outcome: Y(a) with treatment a.
- Data:  $\{(Y_i, X_i, A_i, S_i) : i\}$ , where  $S_i = 1 (i \in RCT)$ .
- Model: for all a = 0, ..., K and s = 0, 1,

user-specified vector-valued functions

$$Y|X,A,S \sim \mathrm{d}G(y|x,a,s) = \exp\{\alpha(x;\theta_{a,s},G_0) + \beta^{\mathsf{T}}(x;\theta_{a,s})q(y)\}\mathrm{d}G_0(y)$$
 "normalizing constant" a common baseline distribution

• Can be seen as a generalization of the GLM:  $G_0$  is unspecified.

#### Empirical likelihood Inference for Y(a)

Estimate the baseline distribution and model parameters:  $\hat{G}_0(y)$  and  $\{\hat{\theta}_{a,s}:a,s\}$ 

- Utilize the entire data to estimate  $G_0(y)$ .
- Asymptotically efficient  $\hat{\theta}_{a,s}$ .

Estimate the distribution of  $Y(a) \mid X = x$ :  $\hat{G}(y \mid x, a, s = 1)$  under *Internal Validity* 

- Plug-in estimator under the DRM for RCT.
- Consistency & asymptotic normality.

Inference for functionals of Y(a), e.g., mean, CDF, quantiles, under *Transportability* 

- Marginalize  $\hat{G}(y | x, a, s = 1)$  over the observed x in *OBS*.
- Confidence region & hypothesis test.

# imuuchas gracias!

## Questions & discussions are welcome! :-)