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Motivation
In many disciplines, data are collected as multiple samples from similar and connected
populations:

x0,1, x0,2, . . . , x0,n0

i.i.d .
∼ G0(x)

x1,1, x1,2, . . . , x1,n1

i.i.d .
∼ G1(x)

⋮

xm,1, xm,2, . . . , xm,nm
i.i.d .
∼ Gm(x),

where G0,G1, . . . ,Gm share some common features.
For example,
▸ in economics, scientists collect survey datasets of individual and household

incomes from year to year;
▸ in network studies, people’s activities on social networks in different periods of

time are collected as multiple samples.
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Example: How to analyze data look like these?

Figure: Histograms of log household relative income from 1968 to 1988. Data source: UK
Family Expenditure Survey.
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Different approaches to statistical analysis
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Density ratio model (DRM) [Anderson, 1979]

▸ gk(x): density of the k th population distribution Gk .
▸ DRM assumes that: for k = 1, . . . ,m,

▸ We call G0 the base distribution; any Gk may serve as the base distribution.
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Why DRM?

▸ DRM is flexible: G0 is unspecified, allowing it to cover many distribution families.

▸ With an appropriate q(x), DRM allows us to use the pooled data to estimate Gk

rather than use data only from Gk .

⇓

gain in statistical efficiency!
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Inference method on the base distribution G0
▸ The base distribution G0 is left unspecified in DRM.
▸ Assign a parametric distribution to G0 Ô⇒ DRM being fully parametric.
▸ We use a nonparametric method: the empirical likelihood (EL) [Owen, 1988].
▸ Owen [2001]: “EL keeps the effectiveness of likelihood methods and does not

impose a known family distribution on the data”.

Figure: Art B. Owen: “Yes, I said it.”
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Efficiency of the DRM-based estimators

▸ Many studies have showed that some DRM-based estimators are more efficient
than the nonparametric estimators.

▸ Motivated by these results, we are interested in how far we can push the efficiency
of the DRM-based estimators.

▸ A “gold standard” is the parametric estimator: estimator under a parametric model
(e.g., a normal model).

▸ When the parametric model is correctly specified, parametric estimators (such as
MLE) are usually the most efficient.

▸ Is it likely that the DRM-based estimators can be as efficient as the parametric
estimators? Or When?
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A two-sample scenario

If there are two samples from populations G0 and G1, and n0 ≫ n1:
▸ The larger sample is expected to characterize the whole population G0 with high

accuracy: G0 can be roughly seen as “known”.
▸ The DRM can then be regarded as a fully parametric model for G1:

g1(x) = g0(x) exp{α + θ⊺q(x)}.

▸ We therefore expect the DRM estimators for G1 to achieve parametric efficiency.
▸ We study the efficiency of some estimators for G1 when:

n0/n1 →∞ as n0,n1 →∞.
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A parametric model
▸ We consider an exponential family model for the two samples:

x0,1, . . . , x0,n0

i.i.d .
∼ g0(x) = B(x) exp{η⊺0q(x) + A(η0)},

x1,1, . . . , x1,n1

i.i.d .
∼ g1(x) = B(x) exp{η⊺1q(x) + A(η1)}.

▸ Recall the two-sample DRM with the same q(x):

g1(x)/g0(x) = exp{α + θ⊺q(x)}.

▸ The DRM contains this exponential family model:

(
α
θ
) = (

A(η1) − A(η0)

η1 − η0
) .

▸ The MLEs under this exponential family model are the parametric estimators
(“gold standard”).
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Theoretical results

We prove that under the two-sample scenario, the DRM-based estimators of the
following parameters achieve the same asymptotic efficiency as the parametric
estimators:
▸ Model parameters (α,θ) under the DRM;
▸ Population distribution G1(x);
▸ Quantiles of G1.
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Efficiency of DRM quantile estimators: an ideal case

▸ We illustrate the efficiency of the DRM quantile estimator under an ideal situation:

G0(x) = G1(x).

▸ Focus on ξp: the pth quantile for G1.
▸ Let k = n0/n1. Assuming k does not evolve with n0,n1, we use the result by Chen

and Liu [2013] to show that in this case:

n1Var(ξ̂p)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

DRM Var

=
1

k + 1
[

p(1 − p)
g2

1(ξp)
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Nonparametric Var

+
k

k + 1
[n1Var(ξ̃p)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Parametric Var

.
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Simulation with data from normal distributions

▸ Focus on the pth quantile for G1.
▸ Both samples are generated from N(0,1).
▸ The DRM-based quantile estimate is obtained assuming only the knowledge of

the most appropriate q(x) = (x , x2)⊺.
▸ Two competitors that only use sample from G1 (with a smaller size):

▸ MLE of quantile derived under the normal model;
▸ Nonparametric empirical quantile.
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Simulation results (numbers are ×n1, based on 1000 repetitions)

Levels p DRM-based MLE Nonparametric

Bias Var Bias Var Bias Var
n0 = k × n1, n1 = 1000, k = 10

0.01 −0.02 4.91 0.03 3.81 0.51 13.53
0.05 −0.01 2.61 0.02 2.42 0.09 4.53
0.10 0.00 1.98 0.02 1.87 0.03 3.29
0.50 0.00 1.10 0.01 1.03 0.05 1.58

n0 = k × n1, n1 = 1000, k = 100
0.01 −0.06 3.94 −0.05 3.83 0.58 13.66
0.05 −0.05 2.46 −0.05 2.41 0.11 4.45
0.10 −0.05 1.86 −0.05 1.85 0.01 2.88
0.50 −0.05 0.97 −0.04 0.96 −0.04 1.52

▸ As k increases, the variances of the DRM estimators approach those of the MLEs.
▸ Our “weighted average” result is supported.

18 / 21



Summary

▸ We prove that in the two-sample scenario where n0/n1 →∞, some DRM
estimators for G1 achieve parametric efficiency.

▸ Our contribution is new and particularly useful in applications where we have one
large historical sample and one small sample to make inference on.

▸ Simulation results on quantile estimation support our theoretical findings.
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Thank you!

We hope someday you may find DRM useful in your research! :-)
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