Estimation Efficiency under A Semiparametric Density Ratio Model

Archer Gong Zhang Department of Statistical Sciences University of Toronto

Jiahua Chen Department of Statistics University of British Columbia

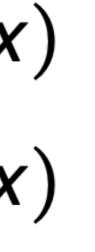
Outline

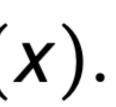
- Motivation
- A Semiparametric Model: Density Ratio Model
- Estimation Efficiency under the Density Ratio Model
 - Quantile Estimation

connected populations:

 $x_{0,1}, x_{0,2}, \ldots, x_{0,n_0} \overset{i.i.d.}{\sim} G_0(x)$ $x_{1,1}, x_{1,2}, \ldots, x_{1,n_1} \overset{i.i.d.}{\sim} G_1(x)$ $X_{m,1}, X_{m,2}, \ldots, X_{m,n_m} \overset{i.i.d.}{\sim} G_m(x).$

In many disciplines, data are collected as multiple samples from <u>similar and</u>

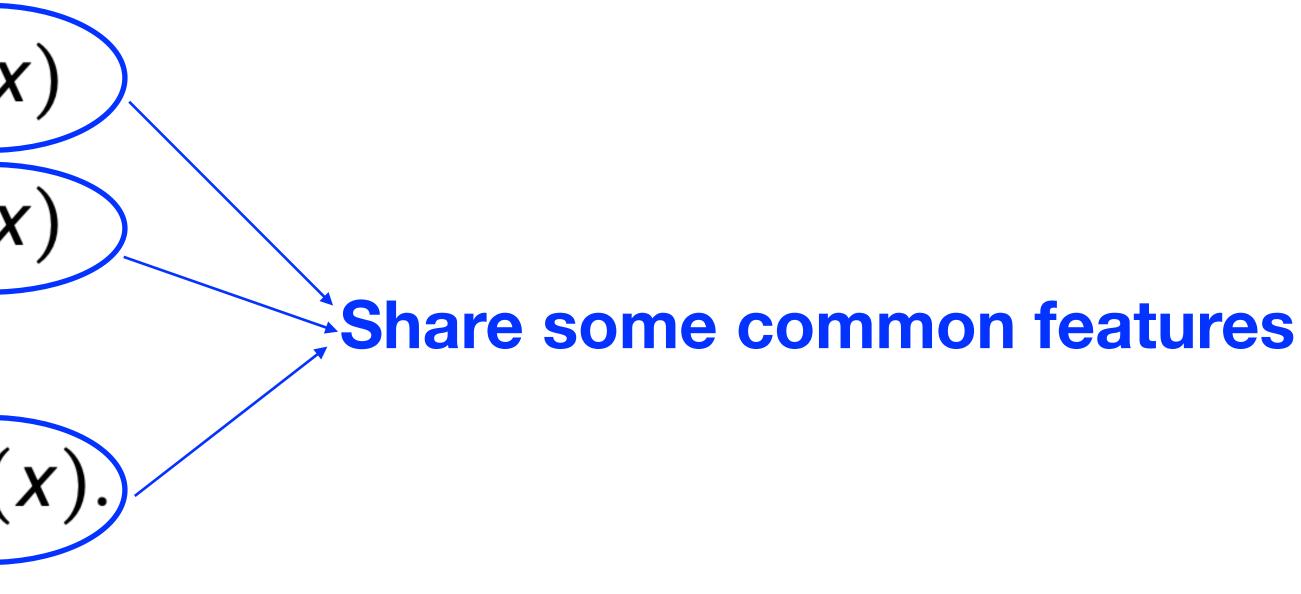




In many disciplines, data are collections:

$$x_{0,1}, x_{0,2}, \dots, x_{0,n_0} \stackrel{i.i.d.}{\sim} G_0(x_{1,1}, x_{1,2}, \dots, x_{1,n_1}) \stackrel{i.i.d.}{\sim} G_1(x_{1,1}, x_{1,2}, \dots, x_{m,n_m})$$

In many disciplines, data are collected as multiple samples from similar and

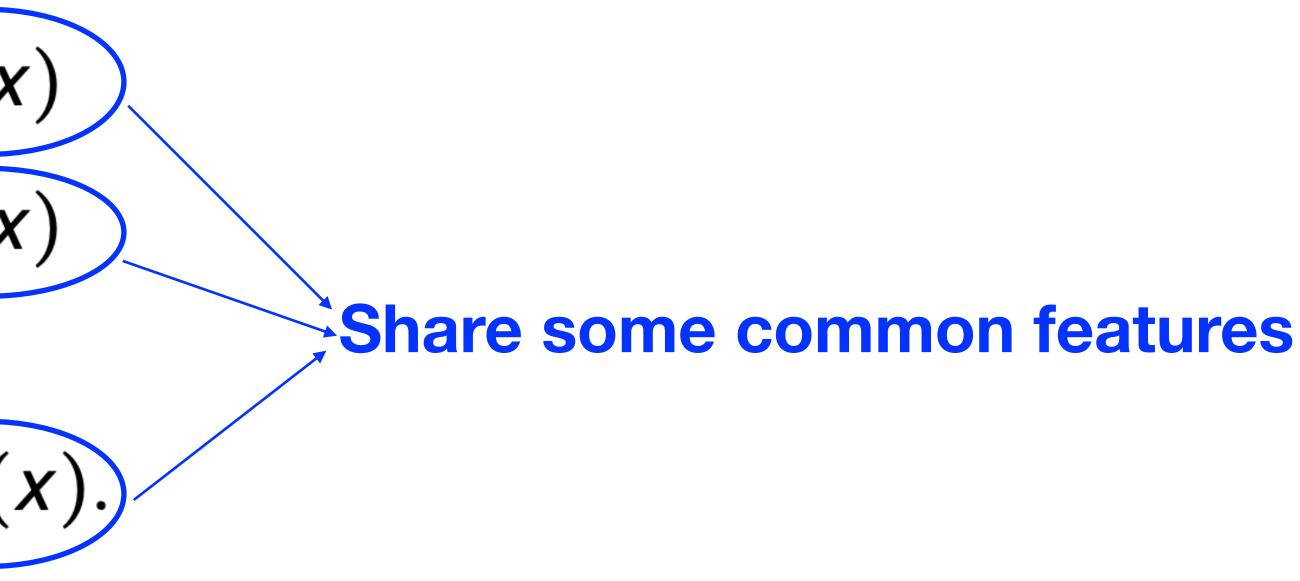


connected populations:

$$x_{0,1}, x_{0,2}, \dots, x_{0,n_0} \overset{i.i.d.}{\sim} G_0(x_{1,1}, x_{1,2}, \dots, x_{1,n_1} \overset{i.i.d.}{\sim} G_1(x_{1,1}, x_{m,2}, \dots, x_{m,n_m})$$

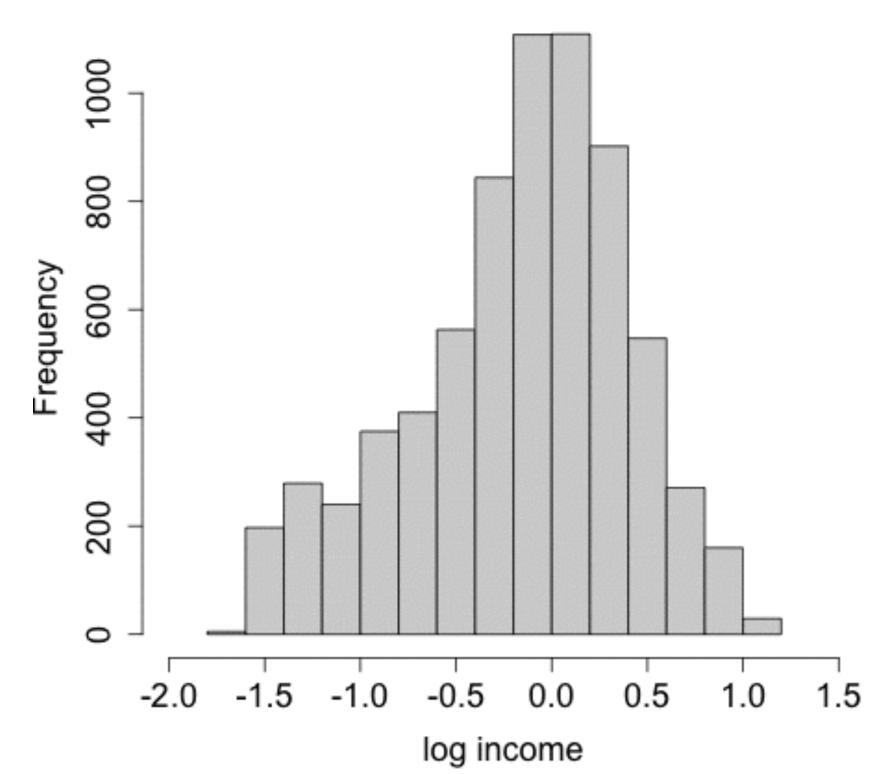
sets of household income data are collected over multiple years: G_k is the population distribution for each year.

In many disciplines, data are collected as multiple samples from similar and



• E.g., to study the evolution of the economic status of a country, survey data

How to analyze data like these? Income data from UK Family Expenditure Survey



Histograms of log household relative income from 1968 to 1988.

Data source: https://archiveshub.jisc.ac.uk/search/archives/412e6ebd-8de7-3e6e-b060-34d35cffaf15.

1968

Parametric approaches

Choose a suitable parametric model (e.g., normal) for each of the multiple populations

Pros: good statistical efficiency

Cons: consequence of model misspecification may be serious

6/25

Parametric approaches	Nonparametric approaches
Choose a suitable parametric model (e.g., normal) for each of the multiple populations	Do not place distributional assumptions on the populations
Pros: good statistical efficiency	Pros: free from the risk of model misspecification
misspecification may be senous	
No 🔅	No 😟

Parametric approaches	Nonparametric approaches	A Semiparametric approach
Choose a suitable parametric model (e.g., normal) for each of the multiple populations	-	Do not place parametric assumptions on each population
Pros: good statistical efficiency	misspecification	Model the connection between the multiple population distributions
Const consequence of model	Cons: low statistical efficiency	A flexible & efficient compromise between parametric and nonparametric approaches
No 🔅	No 😳	Yes!

A Semiparametric Model: Density Ratio Model

- $g_k(x)$: density of the kth population distribution G_k .
- DRM assumes that: for k = 1, ..., m,

$$\frac{g_k(x)}{g_0(x)} = ex$$

$\operatorname{xp}\{\alpha_k + \theta_k^\top q(x)\}$

- $g_k(x)$: density of the kth population distribution G_k .
- DRM assumes that: for k = 1, ..., m,

$$\frac{g_k(x)}{g_0(x)} = ex$$

unknown parameters to be estimated

 $xp\{\alpha_k + \theta_k^\top q(x)\}$

- $g_k(x)$: density of the kth population distribution G_k .
- DRM assumes that: for k = 1, ..., m,

$$\frac{g_k(x)}{g_0(x)} = ex$$

unknown parameters to be estimated

 $\exp\{\alpha_k + \theta_k^{\dagger} q(x)\}$

vector-valued function: basis function

- $g_k(x)$: density of the kth population distribution G_k .
- DRM assumes that: for k = 1, ..., m,

$$\frac{g_k(x)}{g_0(x)} = ex$$

unknown parameters to be estimated

• We call G_0 the base distribution; any G_k may serve the same purpose.

 $\exp\{\alpha_k + \theta_k^{\dagger} q(x)\}$

vector-valued function: basis function

- $g_k(x)$: density of the kth population distribution G_k .
- DRM assumes that: for k = 1, ..., m,

$$\frac{g_k(x)}{g_0(x)} = ex$$

unknown parameters to be estimated

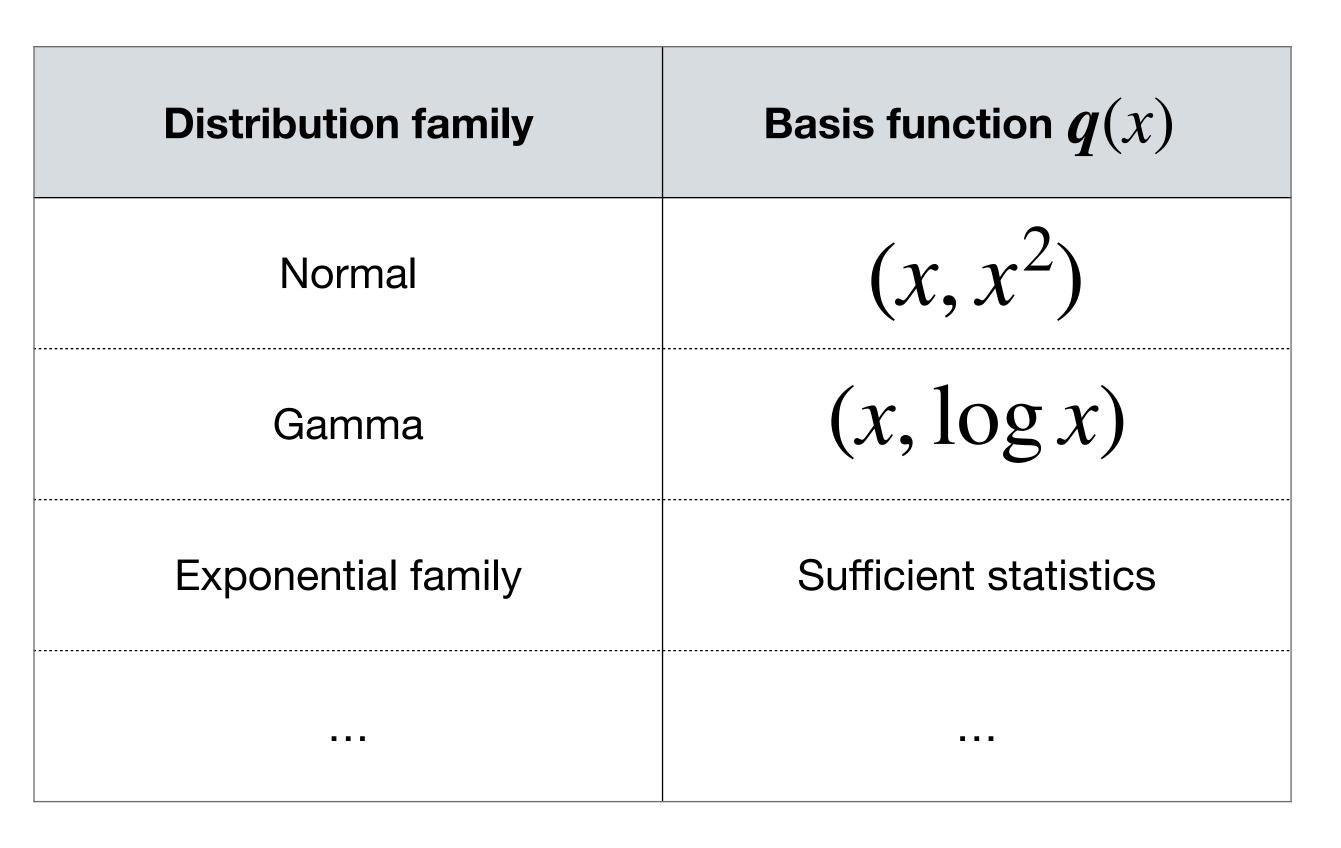
- We call G_0 the base distribution; any G_k may serve the same purpose.

 $xp\{\alpha_k + \theta_k^\top q(x)\}$

vector-valued function: basis function

Sample from G_k forms a biased sample from G_0 characterized by the exponential tilting!

• DRM is flexible: G_0 is unspecified, allowing it to cover many distribution families.



10/25

data to estimate G_k , rather than use data only from G_k .

• With an appropriate basis function q(x), DRM allows us to use the pooled

data to estimate G_k , rather than use data only from G_k .

Gain in statistical efficiency!

- Every G_k can be seen as a distributional shift version of $G_0!$

• With an appropriate basis function q(x), DRM allows us to use the pooled

Can be useful for integrating data from <u>connected</u> sources/domains.

Search "data integration" in JSM2023 program...popular recently!

	<u> </u>		
		Sunday, August 6, 2023	
Action	Time	Title	Туре
View	2:00 PM - 3:50 PM	Advances in Joint Modeling and Data Integration	Contributed Papers
			Back To Top
		Monday, August 7, 2023	
Action	Time	Title	Туре
View	10:30 AM - 12:20 PM	Advances of Statistical Methodologies in Biomedical Data Integration	Invited Paper Session
View	10:30 AM - 12:20 PM	Frontiers and Challenges in Data Integration Analysis with Multiple Outcomes	Topic-Contributed Paper Session
View	2:00 PM - 3:50 PM	Integrating Information from Different Data Sources: Some New Developments	Invited Paper Session
			Back To Top
		Tuesday, August 8, 2023	
Action	Time	Title	Туре
View	8:30 AM - 10:20 AM	When Data Integration Meets Causal Inference	Invited Paper Session
View	10:30 AM - 12:20 PM	Making the case for data quality	Topic-Contributed Paper Session
View	2:00 PM - 3:50 PM	Novel statistical methods for high-dimensional metagenomics and multi-omics data analysis	Topic-Contributed Paper Session
			Back To Top
		Wednesday, August 9, 2023	
Action	Time	Title	Туре
View	8:30 AM - 10:20 AM	Model Transportation, Distribution Shift, and Data Integration	Invited Paper Session
View	8:30 AM - 10:20 AM	Our Healthcare Data Community: Statistical Challenges and Discoveries using EHRs and Beyond	Invited Paper Session
View	8:30 AM - 10:20 AM	Recent advances in high-dimensional data integration methods and applications	Invited Paper Session
View	10:30 AM - 12:20 PM	Distributed, adaptive and efficient inference for modern biomedical data in the post covid world.	Topic-Contributed Paper Session
View	10:30 AM - 12:20 PM	Harnessing multiple data sources to improve generalizability of findings from clinical trials	Invited Paper Session
View	10:30 AM - 12:20 PM	Optimal Transport and Applications to Statistics	Invited Paper Session
			Back To Top

Thursday, August 10, 2023					
Action	Time	Title	Туре		
View	8:30 AM - 10:20 AM	Contributions to Inference from Survey Samples: In Honor of Professor Joe Sedransk	Invited Paper Session		
View	8:30 AM - 10:20 AM	Methods for large multi-cohort data integration in presence of missing and imbalanced covariates	Invited Paper Session		

11/25

• If assigning a parametric form to G_0 , DRM would reduce to a fully parametric model.

- If assigning a parametric form to G_0 , DRM would reduce to a fully parametric model.
- Use a nonparametric inference method: empirical likelihood (EL; Owen, 1988).

Art B. Owen

- If assigning a parametric form to G_0 , DRM would reduce to a fully parametric model.
- Use a nonparametric inference method: empirical likelihood (EL; Owen, 1988).

Art B. Owen

Owen (2001): "EL keeps the effectiveness of likelihood methods and does not impose a known family distribution on the data."

Estimation Efficiency under the Density Ratio Model

 Many studies have showed that some DRM-based estimators are more efficient than the nonparametric estimators.

- Many studies have showed that some DRM-based estimators are more efficient than the nonparametric estimators.
- An interested question: how far we can push their efficiency?

- Many studies have showed that some DRM-based estimators are more efficient than the nonparametric estimators.
- An interested question: how far we can push their efficiency?
- "Gold standard": the parametric estimator derived under a parametric model (e.g., a normal model).

- Many studies have showed that some DRM-based estimators are more efficient than the nonparametric estimators.
- An interested question: how far we can push their efficiency?
- "Gold standard": the parametric estimator derived under a parametric model (e.g., a normal model).
 - usually the most efficient (e.g., MLE).

- Many studies have showed that some DRM-based estimators are more efficient than the nonparametric estimators.
- An interested question: how far we can push their efficiency?
- "Gold standard": the parametric estimator derived under a parametric model (e.g., a normal model).
 - usually the most efficient (e.g., MLE).
- Is it likely that the DRM-based estimators can be as efficient as the parametric estimators?

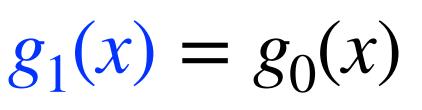
- Many studies have showed that some DRM-based estimators are more efficient than the nonparametric estimators.
- An interested question: how far we can push their efficiency?
- "Gold standard": the parametric estimator derived under a parametric model (e.g., a normal model).
 - usually the most efficient (e.g., MLE).
- Is it likely that the DRM-based estimators can be as efficient as the parametric estimators?
- Or When?

A two-sample scenario

A two-sample scenario

Consider two samples of sizes n_0, n_1 from G_0, G_1 , with $n_0 \gg n_1$.

DRM that connects G_0 , G_1 :



$g_1(x) = g_0(x) \exp\{\alpha + \boldsymbol{\theta}^\top \boldsymbol{q}(x)\}.$

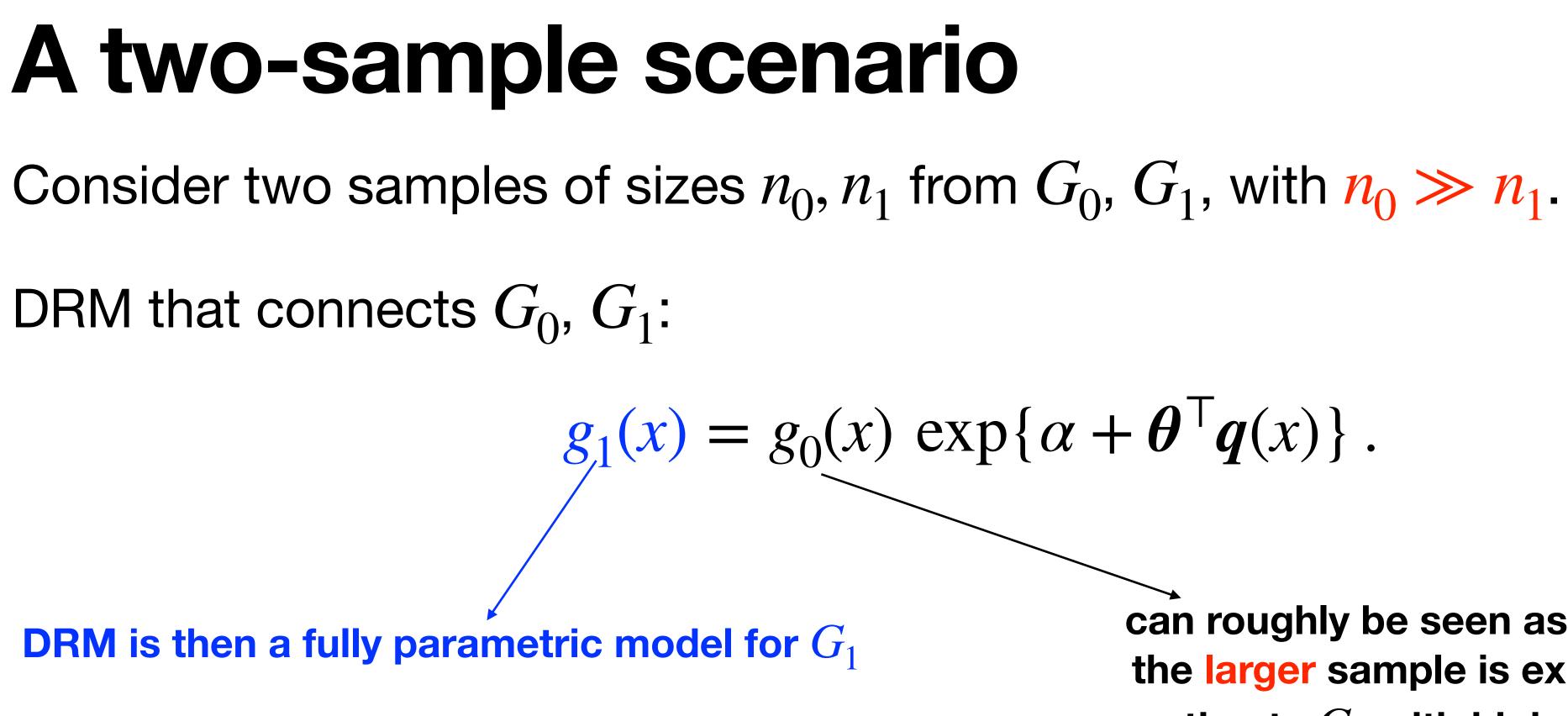
A two-sample scenario

Consider two samples of sizes n_0 , n_1 from G_0 , G_1 , with $n_0 \gg n_1$.

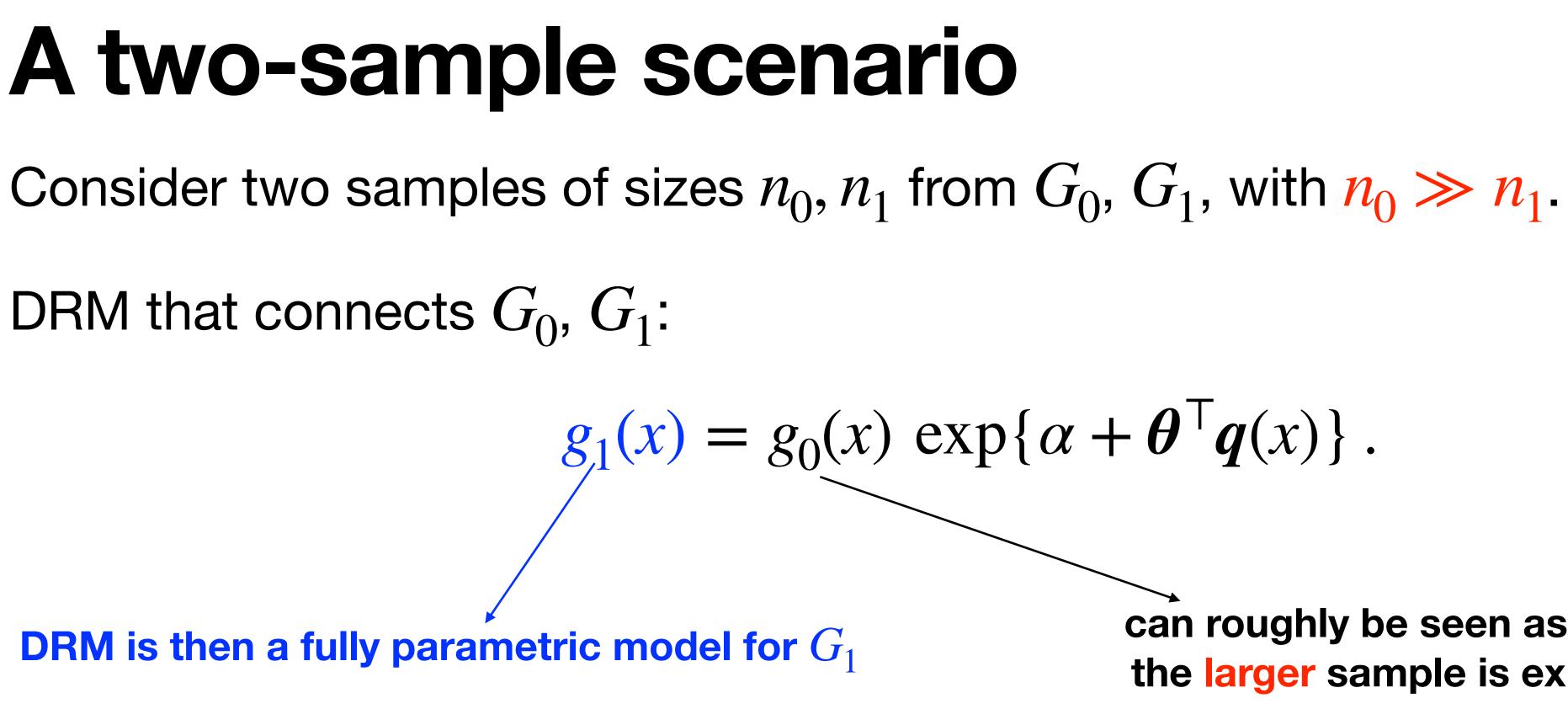
DRM that connects G_0 , G_1 :

 $g_1(x) = g_0(x) \exp\{\alpha + \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{q}(x)\}.$

can roughly be seen as "known": the larger sample is expected to estimate G_0 with high accuracy



can roughly be seen as "known": the larger sample is expected to estimate G_0 with high accuracy



We therefore expect the DRM estimators for G_1 to achieve the "gold-standard" parametric efficiency!

can roughly be seen as "known": the larger sample is expected to estimate G_0 with high accuracy

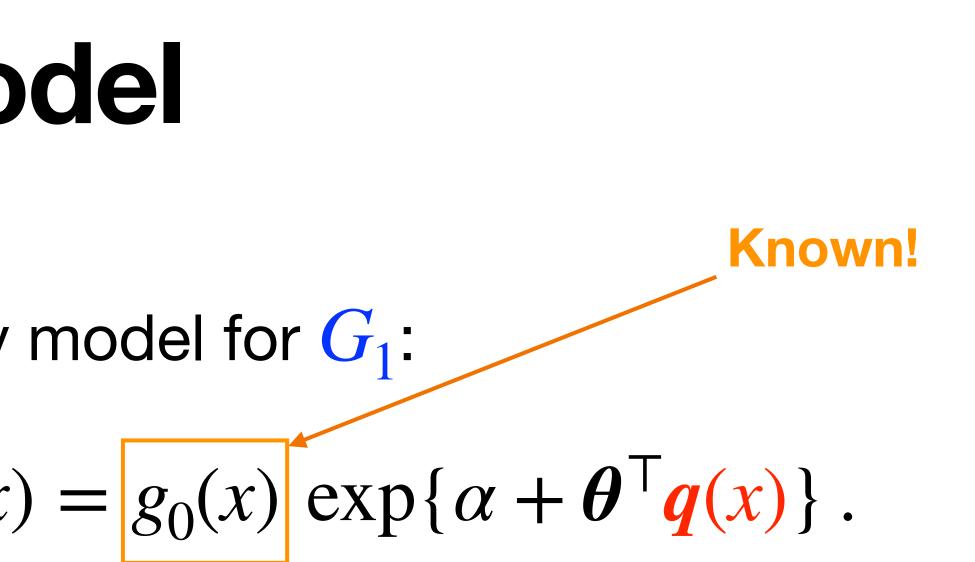
• We consider an exponential family model for G_1 :

$$x_{1,1}, \dots, x_{1,n_1} \stackrel{\text{i.i.d.}}{\sim} g_1(x)$$

 $f(x) = g_0(x) \exp\{\alpha + \theta^{\mathsf{T}} q(x)\}.$

• We consider an exponential family model for G_1 :

$$x_{1,1}, \dots, x_{1,n_1} \stackrel{\text{i.i.d.}}{\sim} g_1(x)$$



• We consider an exponential family model for G_1 :

$$x_{1,1}, \dots, x_{1,n_1} \stackrel{\text{i.i.d.}}{\sim} g_1(x)$$

$$g_1(x)/g_0(x) =$$

Known! $f(x) = g_0(x) \exp\{\alpha + \theta^{\mathsf{T}} q(x)\}.$

• It is a parametric submodel for the two-sample DRM with the same q(x):

 $\exp\{\alpha + \theta^{\top}q(x)\}.$

• We consider an exponential family model for G_1 :

$$x_{1,1}, \dots, x_{1,n_1} \stackrel{\text{i.i.d.}}{\sim} g_1(x)$$

$$g_1(x)/g_0(x) =$$

estimators.

Known! $f(x) = g_0(x) \exp\{\alpha + \theta^{\mathsf{T}} q(x)\}.$

• It is a parametric submodel for the two-sample DRM with the same q(x):

 $\exp\{\alpha + \theta^{\top}q(x)\}.$

• MLEs under this exponential family model are the "gold-standard" parametric

Our contribution

 $n_0/n_1 \rightarrow \infty \text{ as } n_0, n_1 \rightarrow \infty$:

- DRM model parameters (α, θ) ;
- Distribution function $G_1(x)$;
- Quantiles of G_1 .

We theoretically prove that under the two-sample scenario, the following DRMbased estimators for G_1 achieve parametric efficiency asymptotically when

Our contribution

 $n_0/n_1 \rightarrow \infty \text{ as } n_0, n_1 \rightarrow \infty$:

- DRM model parameters (α, θ) ;
- Distribution function $G_1(x)$;
- Quantiles of G_1 .

We theoretically prove that under the two-sample scenario, the following DRMbased estimators for G_1 achieve parametric efficiency asymptotically when

Our contribution is applicable and particularly useful in applications where one wishes to make efficient inference with a small sample, aided by another large historical sample.

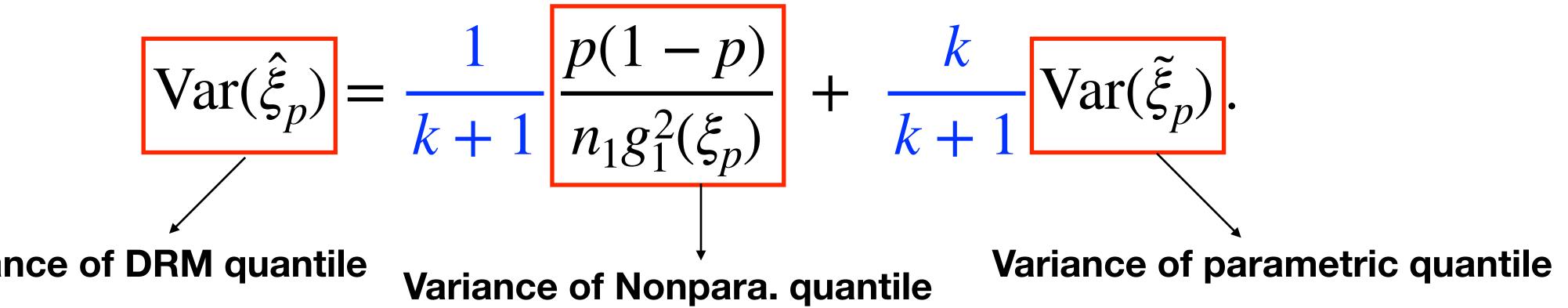
Quantile Estimation

• Focus on ξ_p : the *p*th quantile for G_1 .

- Focus on ξ_p : the *p*th quantile for G_1 .
- Chen and Liu (2013) to show that in this case:

• Let $k = n_0/n_1$. Assuming k does not evolve with n_0, n_1 , we use the result by

- Focus on ξ_p : the *p*th quantile for G_1 .
- Chen and Liu (2013) to show that in this case:



Variance of DRM quantile

• Let $k = n_0/n_1$. Assuming k does not evolve with n_0, n_1 , we use the result by

Simulation with data from normal distributions Parameter of interest: ξ_p – the *p*th quantile for G_1

- Generate two samples both from N(0,1).
- Obtain the DRM quantile estimator only assuming the knowledge of the most appropriate $q(x) = (x, x^2)^{\mathsf{T}}$.
- Two competitors that only use sample from G_1 :
 - MLE of quantile derived under the normal model
 - Nonparametric empirical quantile

Performance of quantile estimators Biases are $\times \sqrt{n_1}$; Variances are $\times n_1$; Based on 1000 repetitions

Levels p	DRM-based		ML	MLE		Nonparametric			
	Bias	Var	Bias	Var	Bias	Var			
	$n_0 = k \times n_1, \ n_1 = 1000, \ k = 10$								
0.01	-0.02	4.91	0.03	3.81	0.51	13.53			
0.05	-0.01	2.61	0.02	2.42	0.09	4.53			
0.10	0.00	1.98	0.02	1.87	0.03	3.29			
0.50	0.00	1.10	0.01	1.03	0.05	1.58			
	$n_0 = k \times n_1, \ n_1 = 1000, \ k = 100$								
0.01	-0.06	3.94	-0.05	3.83	0.58	13.66			
0.05	-0.05	2.46	-0.05	2.41	0.11	4.45			
0.10	-0.05	1.86	-0.05	1.85	0.01	2.88			
0.50	-0.05	0.97	-0.04	0.96	-0.04	1.52			

Performance of quantile estimators Biases are $\times \sqrt{n_1}$; Variances are $\times n_1$; Based on 1000 repetitions									
	Levels p	DRM-based		MLE		Nonparametric			
		Bias	Var	Bias	Var	Bias	Var		
		$n_0 = k \times n_1, \ n_1 = 1000, \ k = 10$							
	0.01	-0.02	4.91	0.03	3.81	0.51	13.53		
	0.05	-0.01	2.61	0.02	2.42	0.09	4.53		
	0.10	0.00	1.98	0.02	1.87	0.03	3.29		
	0.50	0.00	1.10	0.01	1.03	0.05	1.58		
		$n_0 = k \times n_1, \ n_1 = 1000, \ k = 100$							
	0.01	-0.06	3.94	-0.05	3.83	0.58	13.66		
	0.05	-0.05	2.46	-0.05	2.41	0.11	4.45		
	0.10	-0.05	1.86	-0.05	1.85	0.01	2.88		
	0.50	-0.05	0.97	-0.04	0.96	-0.04	1.52		

1. As $k \uparrow$, variances of the DRM estimators approach those of the MLEs. Matches our theoretical result!

Performance of quantile estimators Biases are $\times \sqrt{n_1}$; Variances are $\times n_1$; Based on 1000 repetitions									
-	Levels p	DRM-based		MLE		Nonparametric			
		Bias	Var	Bias	Var	Bias	Var		
-		$n_0 = k \times n_1, \ n_1 = 1000, \ k = 10$							
	0.01	-0.02	4.91	0.03	3.81	0.51	13.53		
	0.05	-0.01	2.61	0.02	2.42	0.09	4.53		
	0.10	0.00	1.98	0.02	1.87	0.03	3.29		
	0.50	0.00	1.10	0.01	1.03	0.05	1.58		
		$n_0 = k \times n_1, \ n_1 = 1000, \ k = 100$							
	0.01	-0.06	3.94	-0.05	3.83	0.58	13.66		
	0.05	-0.05	2.46	-0.05	2.41	0.11	4.45		
	0.10	-0.05	1.86	-0.05	1.85	0.01	2.88		
-	0.50	-0.05	0.97	-0.04	0.96	-0.04	1.52		

2. Our "weighted average" result is also well supported.

Summary

- We prove that in the two-sample scenario where $n_0/n_1 \to \infty$, some DRM estimators for G_1 achieve parametric efficiency.
- Our contribution is new and particularly useful in applications where we have one large historical sample and one small sample to make inference on.
- Simulation results on quantile estimation support our theoretical findings.

References

J. Anderson. Multivariate logistic compounds. *Biometrika*, 66(1):17–26, 1979.

J. Chen and Y. Liu. Quantile and quantile-function estimations under density ratio model. *The Annals of Statistics*, 41(3):1669–1692, 2013.

A. B. Owen. Empirical likelihood ratio confidence intervals for a single functional. *Biometrika*, 75(2):237–249, 1988.

A. B. Owen. Empirical Likelihood. Chapman & Hall/CRC, New York, 2001.

Thank you! :-) Q&A