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 E.g., to study the evolution of the economic status of a country, survey data
sets of household income data are collected over multiple years:

G, is the population distribution for each year.

Share some common features
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How to analyze data like these?

Income data from UK Family Expenditure Survey
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Histograms of log household relative income from
1968 to 1988.

5/25
Data source: https://archiveshub.jisc.ac.uk/search/archives/412e6ebd-8de7-3e6e-b060-34d35cffaf15.
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Different approaches to statistical analysis

Parametric approaches

Nonparametric approaches

A Semiparametric approach

Choose a suitable parametric
model (e.g., normal) for each of
the multiple populations

Cons: conseguence of model
misspecification may be serious

Do not place distributional
assumptions on the populations

Pros: free from the risk of model
misspecification

Do not place parametric
assumptions on each population

Model the connection
between the multiple
population distributions

A flexible & efficient compromise
between parametric and
nonparametric approaches
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A Semiparametric Model:
Density Ratio Model




Density ratio model (DRM) (Anderson, 1979)
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Density ratio model (DRM) (Anderson, 1979)

2.(x): density of the kth population distribution G.

DRM assumes that: fork = 1,..., m,

S0 _ explag + 07 q(0)

8o(x) // \

unknown parameters vector-valued function:

to be estimated basis function

We call G, the base distribution; any (G, may serve the same purpose.

Sample from G, forms a biased sample from G characterized by the exponential tilting!
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Why DRM?

DRM: g,(x)/gy(x) = exp{ay + 6, q(x)} .
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Why DRM?

DRM: g,(x)/gy(x) = exp{ay + 6, q(x)} .

« DRM is flexible: G, is unspecified, allowing it to cover many distribution

families.

Distribution family

Basis function q(x)
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Why DRM?

DRM: g,(x)/gy(x) = exp{ay + 6, q(x)} .

 With an appropriate basis function g(x), DRM allows us to use the pooled
data to estimate G,, rather than use data only from G,.

¥

Gain in statistical efficiency!

» Every G, can be seen as a distributional shift version of G

* Can be useful for integrating data from connected sources/domains.
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Search “data integration” in JSSM2023 program...popular recently!

Sunday, August 6, 2023
Action Time Title Type
2:00 PM - 3:50 PM Advances in Joint Modeling and Data Integration Contributed Papers
Back To Top
Monday, August 7, 2023
Action Time Title Type
10:30 AM - 12:20 PM Advances of Statistical Methodologies in Biomedical Data Integration Invited Paper Session
10:30 AM - 12:20 PM Frontiers and Challenges in Data Integration Analysis with Multiple Outcomes Topic-Contributed Paper Session
2:00 PM - 3:50 PM Integrating Information from Different Data Sources: Some New Developments Invited Paper Session
Back To Top
Tuesday, August 8, 2023
Action Time Title Type
8:30AM -10:20 AM When Data Integration Meets Causal Inference Invited Paper Session

View 10:30 AM - 12:20 PM Making the case for data quality Topic-Contributed Paper Session

View 2:00 PM - 3:50 PM Novel statistical methods for high-dimensional metagenomics and multi-omics data analysis Topic-Contributed Paper Session

Back To Top

Wednesday, August 9, 2023
Action Time Title Type

View 8:30 AM -10:20 AM Model Transportation, Distribution Shift, and Data Integration Invited Paper Session
View 8:30AM -10:20 AM Our Healthcare Data Community: Statistical Challenges and Discoveries using EHRs and Beyond Invited Paper Session
View 8:30AM -10:20 AM Recent advances in high-dimensional data integration methods and applications Invited Paper Session
View 10:30 AM - 12:20 PM Distributed, adaptive and efficient inference for modern biomedical data in the post covid world. Topic-Contributed Paper Session

View 10:30 AM -12:20 PM Harnessing multiple data sources to improve generalizability of findings from clinical trials Invited Paper Session

View 10:30AM - 12:20 PM Optimal Transport and Applications to Statistics Invited Paper Session
Back To Top

Thursday, August 10, 2023
Action Time Title Type

View 8:30AM -10:20 AM Contributions to Inference from Survey Samples: In Honor of Professor Joe Sedransk Invited Paper Session 1 1 /25

View 8:30 AM -10:20 AM Methods for large multi-cohort data integration in presence of missing and imbalanced covariates Invited Paper Session
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Inference for the unspecified G|,

« If assigning a parametric form to G, DRM would reduce to a fully parametric model.

* Use a nonparametric inference method: empirical likelihood (EL; Owen, 1988).
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Owen (2001): “EL keeps the effectiveness of likelithood methods

and does not impose a known family distribution on the data.”

Art B. Owen
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Estimation Efficiency under the
Density Ratio Model
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Efficiency of the DRM-based estimators

 Many studies have showed that some DRM-based estimators are more
efficient than the nonparametric estimators.

* An interested question: how far we can push their efficiency?

 “Gold standard”: the parametric estimator derived under a parametric model
(e.g., a normal model).

* usually the most efficient (e.g., MLE).

* |s it likely that the DRM-based estimators can be as efficient as the
parametric estimators?

e Or When?
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estimate G, with high accuracy
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A two-sample scenario

Consider two samples of sizes n, n; from Gy, G, with 1, > n,.

DRM that connects G, G;:

g1(x) = go(x) exp{a+6'q(x)} .

/S T

DRM is then a fully parametric model for G, (;22 Ir :rzgetlzab;;‘zeig :zpekgt(;gr;o:

estimate G, with high accuracy

We therefore expect the DRM estimators for GG, to achieve
the “gold-standard”parametric efficiency!

15/25
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A parametric submodel

« We consider an exponential family model for G :

.1.d.
X| 15 e Xl g, S g21(x) =gp(x) expra + 0'q(x)) .

* |t is a parametric submodel for the two-sample DRM with the same ¢g(x):

81(x)/go(x) = expla+0 g(x)} .

 MLEs under this exponential family model are the “gold-standard” parametric
estimators.
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Our contribution

We theoretically prove that under the two-sample scenario, the following DRM-
based estimators for (G, achieve parametric efficiency asymptotically when

ny/n; — oo as ny, n; — 0o:
« DRM model parameters (a, 0);
» Distribution function G(x);

» Quantiles of G;.
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Our contribution

We theoretically prove that under the two-sample scenario, the following DRM-
based estimators for (G, achieve parametric efficiency asymptotically when

n()/nl —> OO asS n(), Flq — O0.
« DRM model parameters (a, 0);

» Distribution function G(x);

» Quantiles of Gl

0ur contrlbutlon is appllcable and partlcularly useful in appllcatlons
: where one wishes to make efficient inference with a small sample, |
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Efficiency of DRM quantile estimators

A special case when G, = G,
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Efficiency of DRM quantile estimators

A special case when G, = G,

» Focus on ¢,;: the pth quantile for G

» Let k = ny/n,. Assuming k does not evolve with n, n;, we use the result by
Chen and Liu (2013) to show that in this case:

Variance of DRM quantile Variance of parametric quantile

Variance of Nonpara. quantile
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Simulation with data from normal distributions

Parameter of interest: fp — the pth quantile for G,

» Generate two samples both from N(0,1).

* Obtain the DRM quantile estimator only assuming the knowledge of the most
appropriate g(x) = (x,x%)".

» Two competitors that only use sample from Gy:

 MLE of quantile derived under the normal model

 Nonparametric empirical quantile
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Performance of quantile estimators

Biases are X ,/n; Variances are X n,; Based on 1000 repetitions

Levels p DRM-based MLE Nonparametric
Bias Var Bias Var Bias Var
no=kxny, ny=1000,
0.01 -0.02 4.91 0.03 3.81 0.51 13.53
0.05 —-0.01 2.61 0.02 2.42 0.09 4.53
0.10 0.00 1.98 0.02 1.87 0.03 3.29
0.50 0.00 1.10 0.01 1.03 0.05 1.58
no =kxnq, ni =1000,
0.01 —-0.06 3.94 -0.05 3.83 0.58 13.66
0.05 —-0.05 2.46 -0.05 2.41 0.11 4.45
0.10 -0.05 1.86 -0.05 1.85 0.01 2.88

0.50 —-0.05 0.97 —-0.04 0.96 —-0.04 1.92
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1. As|/|T, variances of the DRM estimators approach those of the MLEs.

¥

Matches our theoretical result! 01/05




Performance of quantile estimators

Biases are X ,/n; Variances are X n,; Based on 1000 repetitions

Levels p DRM-based MLE Nonparametric
Bias Var Bias Var Bias Var
no =kxny, ni=1000,
0.01 -0.02 4.91 0.03 3.81 0.51 13.53
0.05 —0.01 2.61 0.02 2.42 0.09 4.53
0.10 0.00 1.98 0.02 1.87 0.03 3.29
0.50 0.00 1.10 0.01 1.03 0.05 1.58
no =kxny, ni =1000,
0.01 -0.06 3.94 -0.05 3.83 0.58 13.66
0.05 —-0.05 2.46 -0.05 2.41 0.11 4.45
0.10 —-0.05 1.86 —-0.05 1.85 0.01 2.88
0.50 —-0.05 0.97 -0.04 0.96 -0.04 1.52

2. Our “weighted average” result is also well supported.
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Summary

» We prove that in the two-sample scenario where n,/n; — o0, some DRM
estimators for G, achieve parametric efficiency.

* Our contribution is new and particularly useful in applications where we have
one large historical sample and one small sample to make inference on.

o Simulation results on quantile estimation support our theoretical findings.

23/25



References

J. Anderson. Multivariate logistic compounds. Biometrika, 66(1):17-26, 1979.

J. Chen and Y. Liu. Quantile and quantile-function estimations under density ratio model. The Annals of
Statistics, 41(3):1669-1692, 2013.

A. B. Owen. Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 75(2):237—
249, 1988.

A. B. Owen. Empirical Likelihood. Chapman & Hall/CRC, New York, 2001.

24/25



Thank you! :-)
Q&A



