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Motivation
• In many disciplines, data are collected as multiple samples from similar and 

connected populations:  

• E.g., to study the evolution of the economic status of a country, survey data 
sets of household income data are collected over multiple years:  

 is the population distribution for each year. Gk

Share some common features
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How to analyze data like these?

Histograms of log household relative income from 
1968 to 1988.

Income data from UK Family Expenditure Survey

Data source: https://archiveshub.jisc.ac.uk/search/archives/412e6ebd-8de7-3e6e-b060-34d35cffaf15.
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Different approaches to statistical analysis
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Different approaches to statistical analysis

Parametric approaches

Choose a suitable parametric 
model (e.g., normal) for each of 
the multiple populations

Pros: good statistical efficiency

Cons: consequence of model 
misspecification may be serious

No   ☹
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Different approaches to statistical analysis

Parametric approaches

Choose a suitable parametric 
model (e.g., normal) for each of 
the multiple populations

Pros: good statistical efficiency

Cons: consequence of model 
misspecification may be serious

No   ☹

Nonparametric approaches

Do not place distributional 
assumptions on the populations

Pros: free from the risk of model 
misspecification

Cons: low statistical efficiency

No "

A Semiparametric approach

Do not place parametric 
assumptions on each population

Model the connection 
between the multiple 
population distributions

A flexible & efficient compromise 
between parametric and 
nonparametric approaches

Yes!    #
/256



A Semiparametric Model:  
Density Ratio Model



Density ratio model (DRM) (Anderson, 1979)
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Density ratio model (DRM) (Anderson, 1979)
• : density of the th population distribution .gk(x) k Gk

• DRM assumes that: for k = 1,…, m,
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g0(x) = exp{αk + θ⊤

k q(x)}
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Density ratio model (DRM) (Anderson, 1979)
• : density of the th population distribution .gk(x) k Gk

• DRM assumes that: for k = 1,…, m,
gk(x)
g0(x) = exp{αk + θ⊤

k q(x)}

• We call  the base distribution; any  may serve the same purpose.G0 Gk

• Sample from  forms a biased sample from  characterized by the exponential tilting!Gk G0

unknown parameters  
to be estimated

vector-valued function:  
basis function
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Why DRM?
DRM: gk(x)/g0(x) = exp{αk + θ⊤

k q(x)} .
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Why DRM?

• DRM is flexible:  is unspecified, allowing it to cover many distribution 
families. 

G0

(x, x2)
(x, log x)

Distribution family         Basis function 

Normal

Gamma

Exponential family Sufficient statistics

… …

q(x)

DRM: gk(x)/g0(x) = exp{αk + θ⊤
k q(x)} .
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Why DRM?

• With an appropriate basis function , DRM allows us to use the pooled 
data to estimate , rather than use data only from . 

q(x)
Gk Gk

Gain in statistical efficiency!

DRM: gk(x)/g0(x) = exp{αk + θ⊤
k q(x)} .
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Why DRM?

• With an appropriate basis function , DRM allows us to use the pooled 
data to estimate , rather than use data only from . 

q(x)
Gk Gk

• Every  can be seen as a distributional shift version of ! 


• Can be useful for integrating data from connected sources/domains. 

Gk G0

Gain in statistical efficiency!

DRM: gk(x)/g0(x) = exp{αk + θ⊤
k q(x)} .
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Search “data integration” in JSM2023 program…popular recently!
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Inference for the unspecified G0
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Inference for the unspecified G0
• If assigning a parametric form to , DRM would reduce to a fully parametric model. G0

• Use a nonparametric inference method: empirical likelihood (EL; Owen, 1988).

Art B. Owen

Owen (2001): “EL keeps the effectiveness of likelihood methods 
and does not impose a known family distribution on the data.”
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Estimation Efficiency under the 
Density Ratio Model



Efficiency of the DRM-based estimators

/2514



Efficiency of the DRM-based estimators
• Many studies have showed that some DRM-based estimators are more 

efficient than the nonparametric estimators. 

/2514



Efficiency of the DRM-based estimators
• Many studies have showed that some DRM-based estimators are more 

efficient than the nonparametric estimators. 

• An interested question: how far we can push their efficiency?

/2514



Efficiency of the DRM-based estimators
• Many studies have showed that some DRM-based estimators are more 

efficient than the nonparametric estimators. 

• An interested question: how far we can push their efficiency?

• “Gold standard”: the parametric estimator derived under a parametric model 
(e.g., a normal model).

/2514



Efficiency of the DRM-based estimators
• Many studies have showed that some DRM-based estimators are more 

efficient than the nonparametric estimators. 

• An interested question: how far we can push their efficiency?

• “Gold standard”: the parametric estimator derived under a parametric model 
(e.g., a normal model).

• usually the most efficient (e.g., MLE). 

/2514



Efficiency of the DRM-based estimators
• Many studies have showed that some DRM-based estimators are more 

efficient than the nonparametric estimators. 

• An interested question: how far we can push their efficiency?

• “Gold standard”: the parametric estimator derived under a parametric model 
(e.g., a normal model).

• usually the most efficient (e.g., MLE). 

• Is it likely that the DRM-based estimators can be as efficient as the 
parametric estimators? 

/2514



Efficiency of the DRM-based estimators
• Many studies have showed that some DRM-based estimators are more 

efficient than the nonparametric estimators. 

• An interested question: how far we can push their efficiency?

• “Gold standard”: the parametric estimator derived under a parametric model 
(e.g., a normal model).

• usually the most efficient (e.g., MLE). 

• Is it likely that the DRM-based estimators can be as efficient as the 
parametric estimators? 

• Or When? 
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A two-sample scenario
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A two-sample scenario
Consider two samples of sizes  from , , with . 


DRM that connects , : 





 

n0, n1 G0 G1 n0 ≫ n1

G0 G1

g1(x) = g0(x) exp{α + θ⊤q(x)} .
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A two-sample scenario
Consider two samples of sizes  from , , with . 


DRM that connects , : 





 

n0, n1 G0 G1 n0 ≫ n1

G0 G1

g1(x) = g0(x) exp{α + θ⊤q(x)} .

can roughly be seen as “known”:  
the larger sample is expected to  
estimate  with high accuracyG0

DRM is then a fully parametric model for G1

We therefore expect the DRM estimators for  to achieve  
the “gold-standard”parametric efficiency!

G1

/2515



A parametric submodel
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A parametric submodel

• We consider an exponential family model for :G1

x1,1, …, x1,n1
i.i.d.∼ g1(x) = g0(x) exp{α + θ⊤q(x)} .
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A parametric submodel

• We consider an exponential family model for :G1

x1,1, …, x1,n1
i.i.d.∼ g1(x) = g0(x) exp{α + θ⊤q(x)} .

• It is a parametric submodel for the two-sample DRM with the same :q(x)
g1(x)/g0(x) = exp{α + θ⊤q(x)} .

• MLEs under this exponential family model are the “gold-standard” parametric 
estimators.

Known!
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Our contribution
We theoretically prove that under the two-sample scenario, the following DRM-
based estimators for  achieve parametric efficiency asymptotically when 

 as : 


• DRM model parameters ;


• Distribution function ;


• Quantiles of .

G1
n0/n1 → ∞ n0, n1 → ∞

(α, θ)
G1(x)

G1
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Our contribution
We theoretically prove that under the two-sample scenario, the following DRM-
based estimators for  achieve parametric efficiency asymptotically when 

 as : 


• DRM model parameters ;


• Distribution function ;


• Quantiles of .

G1
n0/n1 → ∞ n0, n1 → ∞

(α, θ)
G1(x)

G1
Our contribution is applicable and particularly useful in applications  
where one wishes to make efficient inference with a small sample,  

aided by another large historical sample.
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Quantile Estimation



Efficiency of DRM quantile estimators
A special case when G1 = G0
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Efficiency of DRM quantile estimators
A special case when G1 = G0

• Focus on : the th quantile for .ξp p G1

• Let . Assuming  does not evolve with , we use the result by 
Chen and Liu (2013) to show that in this case: 

k = n0/n1 k n0, n1

Var( ̂ξp) = 1
k + 1

p(1 − p)
n1g2

1(ξp) + k
k + 1 Var(ξ̃p) .

Variance of DRM quantile Variance of Nonpara. quantile Variance of parametric quantile
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Simulation with data from normal distributions
Parameter of interest:  — the th quantile for ξp p G1

• Generate two samples both from .


• Obtain the DRM quantile estimator only assuming the knowledge of the most 
appropriate .


• Two competitors that only use sample from :


• MLE of quantile derived under the normal model


• Nonparametric empirical quantile

N(0,1)

q(x) = (x, x2)⊤

G1

/2520



Performance of quantile estimators
Biases are ; Variances are ; Based on 1000 repetitions× n1 × n1
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1. As  , variances of the DRM estimators approach those of the MLEs.k ↑

Matches our theoretical result!

Performance of quantile estimators
Biases are ; Variances are ; Based on 1000 repetitions× n1 × n1
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2. Our “weighted average” result is also well supported.

Performance of quantile estimators
Biases are ; Variances are ; Based on 1000 repetitions× n1 × n1
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Summary

• We prove that in the two-sample scenario where , some DRM 
estimators for  achieve parametric efficiency. 


• Our contribution is new and particularly useful in applications where we have 
one large historical sample and one small sample to make inference on. 


• Simulation results on quantile estimation support our theoretical findings.

n0/n1 → ∞
G1
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Thank you! :-)

Q & A


