A Semiparametric Approach to Causal Inference

Published in arXiv, 2024

Archer Gong Zhang, Nancy Reid, Qiang Sun

Abstract: In causal inference, an important problem is to quantify the effects of interventions or treatments. Many studies focus on estimating the mean causal effects; however, these estimands may offer limited insight since two distributions can share the same mean yet exhibit significant differences. Examining the causal effects from a distributional perspective provides a more thorough understanding. In this paper, we employ a semiparametric density ratio model (DRM) to characterize the counterfactual distributions, introducing a framework that assumes a latent structure shared by these distributions. Our model offers flexibility by avoiding strict parametric assumptions on the counterfactual distributions. Specifically, the DRM incorporates a nonparametric component that can be estimated through the method of empirical likelihood (EL), using the data from all the groups stemming from multiple interventions. Consequently, the EL-DRM framework enables inference of the counterfactual distribution functions and their functionals, facilitating direct and transparent causal inference from a distributional perspective. Numerical studies on both synthetic and real-world data validate the effectiveness of our approach.

Available here